
The Sogou System for Blizzard Challenge 2020 

Fanbo Meng, Ruimin Wang, Peng Fang, Shuangyuan Zou,                                                        

Wenjun Duan, Ming Zhou, Kai Liu, Wei Chen 

Sogou, Beijing, P.R. China 
{liukaios3228, mengfanbosi0935}@sogou-inc.com 

 

Abstract 

In this paper, we introduce the text-to-speech system from 

Sogou team submitted to Blizzard Challenge 2020. The goal of 

this year’s challenge is to build a natural Mandarin Chinese 

speech synthesis system from the 10-hours corpus by a native 

Chinese male speaker. We will discuss the major modules of 

the submitted system: (1) the front-end module to analyze the 

pronunciation and prosody of text; (2) the FastSpeech-based 

sequence-to-sequence acoustic model to predict acoustic 

features; (3) the WaveRNN based neural vocoder to reconstruct 

waveforms. Evaluation results provided by the challenge 

organizer are also discussed. 

Index Terms: speech synthesis, FastSpeech, neutral network 

vocoder 

1. Introduction 

The Blizzard Challenge has been held once a year since 2005, 

in order to better understand and compare research techniques 

in building corpus-based speech synthesizers on the same data. 

The basic challenge is to take the released speech database, 

build a synthetic voice from the data and synthesize a prescribed 

set of test sentences. The sentences from each synthesizer are 

then evaluated through listening tests. 

The HMM-based statistical parametric speech synthesis 

(SPSS) method was first proposed and applied successfully in 

1999 [1]. In this method, spectrum, pitch and duration are 

modeled simultaneously in a framework of decision trees and 

HMMs. Then, many techniques such as MGE-training [2] and 

phone duration modeling [3] were proposed to improve the 

framework. And post-filter methods, such as global variance 

(GV) [4], variance scaling (VS) [5] and modulation spectrum 

(MS) [6], were also helpful to improve the quality of 

synthesized speech.  

Deep Neural Networks models have been applied 

successfully to SPSS in 2013 [7-9]. DNN-LSTM models have 

achieved greater performance in both the frontend text 

processing [10] and backend acoustic modeling [11]. Recently, 

a post-filter based on a generative adversarial network (GAN) 

was proposed to compensate for the differences between natural 

speech and speech synthesized by statistical parametric speech 

synthesis [12]. 

The traditional frameworks need an extra module to align 

the linguistic and acoustic features, and model the duration of 

linguistic units and acoustic features separately. The inaccurate 

align errors and the disagreement between the duration model 

and acoustic model may degrade the synthesis effect [13]. To 

address this problem, the attention-based sequence-to-sequence 

(seq2seq) models [14, 15] have been proposed and obtain 

superior performance [16-22]. 

After acoustic models, vocoder is used to generate 

waveforms from acoustic features predicted by acoustic models. 

The synthesized waveforms by traditional vocoders, such as 

STRAIGHT [23], WORLD [24] and so on, are found distortion 

compared to real speech. Many neural network vocoders are 

proposed to address the problem. Van den Oord et al. proposed 

WaveNet [25], a fully probabilistic and autoregressive deep 

neural network, with the predictive distribution for each audio 

sample conditioned on all previous ones. In Blizzard 2017, the 

WaveNet system had a good performance [26]. Deep Voice 1 

and 3 [27, 28], the Parallel WaveNet [29], WaveRNN [30] and 

WaveGlow [31] have done more attempts and optimizations.  

The paper is organized as follows. Section 2 introduces the 

details of the English task in Blizzard 202. Section 3 describes 

our system, including text analysis system, acoustic model and 

vocoder. Section 4 presents the results of the benchmark 

systems and all the participation. Finally, the conclusion is 

given in Section 5. 

2. The task in Blizzard 2020 

There are two tasks this year: 

2020-MH1: The Mandarin data for the hub task 2020-MH1 

is provided with text transcriptions only. About 10 hours of 

speech data of a single Chinese male in news style. The data is 

on several different channels. 

2020-SS1: The Shanghainese data for the spoke task 2020-

SS1 is provided with both text and phonemic transcriptions. 

Neither are time-aligned. 

We participated in the task 2020-MH1 of Blizzard 2020. 

3. Sogou speech synthesis system 

As shown in Figure 1, our system consists of two parts, training 

and synthesis for task MH1. At the training phase, we first 

preprocess the original data, and then train our acoustic model 

and vocoder model based on this preprocessed data. At the 

synthesis phase, we first do the text analysis which converts the 

test manuscript to phoneme sequence with prosody boundary, 

and then the acoustic model and the vocoder model are used to 

get the final synthesized waveforms. We will introduce the 

details as follows. 

3.1. Data processing 

The data provided by the organizer are 4365 audio files at 48 

kHz sampling rate and the corresponding texts. Considering the 

texts may disagree with the audios, firstly we check all the texts 

based on the audios. Secondly, we annotate the pinyin and the 

boundaries of the syllables, and the prosody boundaries in three 

types: syllable, prosody word and prosody phrase. Thirdly an 

HMM-based forced-alignment system is used to get the 

boundaries of the initials and the finals. Finally, we convert the 
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Figure 1: The flowchart of Sogou TTS system 

 

sampling rate of the data to 32 kHz and reduce the energy of the 

waveforms at silence. Based on the processed data, we extract 

160-dimension Mel spectrogram at 32 kHz using a 50ms frame 

length, 5ms frame hop and a Hann window function.  

3.2. Text analysis system 

The text analysis system mainly contains text normalization 

(TN), Chinese word segmentation (CWS), part-of-speech (POS) 

tagging, polyphone prediction and prosodic boundary 

prediction. 

Text normalization is an essential procedure to normalize 

unreadable numbers, it contains a lot of ambiguity. For example, 

“11:23” can be read as time or the score of a game, “2020” can 

be read as a year or a number. We combine the advantages of a 

rule-based model and maximum entropy (ME) model to resolve 

such ambiguity problems and convert all symbolic chars into 

Chinese characters. 

For word segmentation, we train a Bi-LSTM model with 

140k external data to predict the word boundaries from the 

normalized texts. Besides, an extra user-defined dictionary is 

adopted to reduce the generation of the out-of-vocabulary word. 

Specifically, we abstract the word dictionary as features, and 

then merge these features and char information into the model 

for prediction. 

 For polyphone prediction or G2P, we use the phonetic 

information of words contained in the dictionary directly. And, 

we use the BERT-DNN model to do polyphone prediction by 

more than 300k external data. We use a pre-trained BERT1 to 

extract char-level features, then merge the POS features and 

send them to the DNN network to obtain pinyin classification. 

Finally, for the prosodic boundary prediction, we predict 

two-level boundaries using a BERT-LSTM model. We use 

BERT to get char-level features, and merge POS tags and 

several numeric features of the word context, then send them to 

the Bi-LSTM network. More than 200k annotated sentences are 

used to finetune the BERT-LSTM model.  

3.3. Fastspeech-based acoustic model 

We adopt FastSpeech [22] as our acoustic model to predict mel- 

spectrogram from the phoneme sequence. Besides, we also 

made some optimizations on basic FastSpeech model. 

                                                                 

 
1 https://github.com/google-research/bert 

FastSpeech is composed of a multi-layer transformer 

encoder-decoder, and CNN duration model with a length 

regulator. Our first optimization is to use hierarchical 

variational autoencoders (VAE) [32], which includes sentence-

level VAE and phoneme-level VAE. We use sentence-level 

VAE to model the channel difference information in the 

training data. Phoneme-level VAE is used to model the local 

prosodic information of sentences. In the synthesis stage, the 

sentence VAE is set to zero. We use an additional model to 

predict the value of phoneme-level VAE.  

 

Figure 2: Overview of the proposed acoustic model. Dashed 

lines are only valid during training. 

 

Secondly, we adopt a multi-band decoder. The motivation 

is that high-dimensional Mel spectrograms are more difficult 

to predict and are correlated with low-dimensional ones. So 

we use several different decoders to model different frequency 

band's mel-spectrogram. Each decoder additionally uses real 

(training stage) or predicted (synthesis stage) low-dimensional 

mel-spectrogram as input. For example, the decoder which 

predicts 101-160 dimensional Mel uses the real or predicted 1-

100 dimensional Mel. All decoders synthesize in order from 

low frequency to high frequency in the synthesis stage. Our 

internal experiments show that this method can improve the 

accuracy of high-dimensional Mel. 

Thirdly, we introduced GAN. After the basic model 

converges, we regard the basic acoustic model as a generator G, 

and introduce a discriminator D to distinguish real and 

predicted mel-spectrogram. We perform additional adversarial 

training to make the distribution of predicted Mel closer to the 

real distribution. 

Specifically, our encoder, decoder, and the model to predict 

phoneme-level VAE all use 6-layer 384-node transformers. 4 

decoders are used to model 160-dimensional mel-spectrogram 

extracted from the waveforms with 32KHz sample rate, 

respectively modeling 1-20 dimensions, 21-40 dimensions, 41- 

100 dimensions, 101-160 dimensions. The hierarchical VAE 

reference encoder uses 3 layers of 2-d convolution and a GRU, 

and the discriminator D uses 3 layers of 2-d convolution. 

3.4. WaveRNN-based vocoder 

First of all, we adopt WaveRNN [30] as our base vocoder 

structure. In the originally WaveRNN, a 16-bits speech signal 

is split into two 8-bits parts which represent the coarse fine of 

the sample. In our WaveRNN-like vocoder we do not build the 

model in two split sample parts, but directly predict a 16-bits 

wave with two GRU layers instead. Since training a 16-bits 

wave by categorical distribution would be prohibitively costly, 

we instead modeled the samples with the discretized mixture of 

logistics (MOL) distribution like the Parallel-WaveNet[29]. We 

found that the generated speech quality in MOL distribution is 

better than the original WaveRNN model. 
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Secondly, we introduce subband technology, which is 

widely used in speech signal processing, e.g., audio codec and 

speech enhancement. In 2018, the technology was applied to 

neural vocoder for the first time. Then, Chengzhu Yu et al. find 

an efficient way to combine subband and vocoder by employ 

the Pseudo Quadrature Mirror Filter Bank (PQMF) to multi-

band processing [33][34]. Considering the efficiency and 

speech quality, we choose PQMF as our subband technology 

too. The result of our system display that subband processing 

can improve the generated speech quality. 

Finally, we found that the generated speech quality 

degraded with the acoustic model generated mel-spectrogram 

as a vocoder input. This is caused by the mismatch between the 

real mel-spectrogram and the mel-spectrogram generated by the 

acoustic model. In order to fix this problem, we train a 

Tacotron-like acoustic model to process all the training mel-

spectrogram by teaching force. Eventually, the speech quality 

gets a great promotion. 

4. Results 

In this year’s challenge, there are 17 systems in total including 

natural speech (system A). Our submitted system is annotated 

as D. There are three criteria in the evaluation of sentences: 

Pinyin+Tone Error Rate (PTER), Mean opinion score 

(naturalness) and Similarity. And there are seven criteria in the 

evaluation of paragraphs: Overall, Pleasantness, Speech Pauses, 

Stress, Intonation, Emotion and Listening effort. We will 

discuss the details as follows. 

4.1. Evaluation of sentences 

Figure 3 shows the PTER of sentences. As expected, the 

original natural speech achieves the best score of 0.074. System 

L achieves the best score of 0.086 among all the submitted 

systems. The PTER of our system is 0.096. In doing the 

listening test, we found one system split the test manuscript by 

words, and inserted pauses between words, e.g., “农业/辅导/生

词/检查/对话/和尚”. We think this method may improve the 

PTER. 

 

 

Figure 3: the PTER of the evaluation of sentences. 

Figure 4 shows the MOS of the naturalness of sentences, 

multiple systems’ median scores are relatively close. The 

original natural speech achieves the highest score of 4.7. 

System I and system O achieve the highest score of 4.2 among 

all the submitted systems. The MOS of our system is 3.9. We 

think it may be helpful that providing more information to the 

FastSpeech acoustic model, such as stress.  

 

 

Figure 4: the MOS of naturalness of sentences. 

 

Figure 5 shows the MOS of similarity of sentences. It can 

be seen from the median score that the effects of multiple 

systems are relatively close. The original natural speech 

achieves the highest score of 4.4. The system I achieves the 

highest score of 4.2 among all the submitted systems. The MOS 

of our system is 3.9. Firstly there is still a big gap between the 

predicted acoustic mel- spectrogram and the real ones, and we 

use GAN to improve the quality of synthesized speech, which 

may disagree with the perception of humans and hurt the 

similarity.  
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Figure 5: the MOS of similarity of sentences. 

 

4.2. Evaluation of paragraphs 

Figure 6 shows the MOS of overall impression of paragraphs. 

The distance between the score of the original natural speech 

and the score of the submitted systems is bigger than the 

distance of the scores of sentences. While the distance between 

the results of our system and the results of the best submitted 

system is not as big as the distance of the scores of sentences. 

This indicates the submitted system still can’t make full use of 

paragraph information. There is still a long way to synthesize 

paragraphs. 

  

 

Figure 6: the MOS of overall impression of paragraphs. 

 

5. Conclusions 

This paper presents the details of our submitted system and 

summarizes the results in Blizzard Challenge 2020. In our 

system, improved FastSpeech and WaveRNN vocoder are used 

in order to achieve natural and high-fidelity speech.  
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