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Abstract
This paper presents the OPPO text-to-speech system for
Blizzard Challenge 2020. A statistical parametric speech
synthesis based system was built with improvements in both
frontend and backend. For the Mandarin task, a BERT model
was used for the frontend, a Tacotron acoustic model and a
WaveRNN vocoder model were used for the backend. For the
Shanghainese task, the frontend was built from scratch, a
Tacotron acoustic model and a MelGAN vocoder model were
used for the backend. For the Mandarin task, evaluation results
showed that our proposed system performed best in
naturalness, and achieved near-best results in similarity. For
the Shanghainese task, we got poor results in most indicators.
Index Terms: speech synthesis, BERT, Tacotron, WaveRNN,
MelGAN

1. Introduction
The text-to-speech (TTS) system has attracted the attention of
many researchers, due to its importance in human-computer
interaction. The statistical parametric speech synthesis (SPSS)
[1] has become the most mainstream method of speech
synthesis. SPSS is essentially composed of two parts, frontend
and backend. In the frontend, linguistic features are extracted
from the text input. In the backend, the acoustic model is used
for transforming linguistic features to acoustic features, and
the vocoder model is used for transforming acoustic features
to audio signal. Recently, deep neural networks (DNNs) have
been utilized as the acoustic model [2][3], and vocoder model
[4][5] for TTS. Techniques for training DNNs to generate
high-quality speech are widely studied.

Considering the rapid development of speech synthesis
technologies, the Blizzard Challenge has been devised to tasks
with more challenging data. In this year’s challenge, the task
is to build a speech synthesis system from Mandarin corpus
about 9.5 hours and Shanghainese corpus about 3 hours.

For the Mandarin task, we developed the frontend based
on BERT [6]. For the acoustic model and neural vocoder, we
firstly trained a multi-speaker Tacotron2 [7] model and
WaveRNN [8] model, and then the corpus provided by the
organizer was used for adaptive training.

For the Shanghainese task, we built the Shanghainese
grapheme-to-phoneme (G2P) module based on Shanghainese
pronunciation dictionary. The module of word segmentation
and prosody prediction remained the same as Mandarin. For
the acoustic model, we used the corpus provided by the
organizer to train a Tacotron2 model. For the neural vocoder,
we trained a multi-speaker MelGAN [9] model, and then the
corpus provided by the organizer was used for adaptive
training.

2. TTS System
In this section, we will introduce the framework of our SPSS
system. As indicated in Figure 1, our SPSS system consists of
two parts, the training phase and the testing phase. We
followed this flowchart and constructed our submitted system
this year. A detailed description of the training and testing
procedure will be presented as follows.

Figure 1: Pipeline of our SPSS system.

2.1. Data processing

For the Mandarin task, the data provided by the organizer are
4365 audio files at 48kHz sampling rate and the corresponding
texts. For the Shanghainese task, the data provided by the
organizer are 1900 audio files at 16kHz sampling rate and the
corresponding phonetic transcriptions. First, we performed
manual annotation, including Pinyin (with tone), prosodic
word boundary and prosodic phrase boundary. Then, we
extracted 80-dimensional Mel spectrogram.

2.2. Frontend

The goal of the frontend is to extract phonetic and prosodic
information from the input text. Figure 2 shows the overview
of our frontend. Frontend contains some components,
including text normalization, word segmentation, part-of-
speech (POS) tagging, prosodic boundary prediction and G2P.
We used BERT to extract features for improving prediction
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accuracy. We designed the architecture of each module to fit
specific tasks.

Figure 2: Pipeline of our Frontend.

Prosody structure is important for naturalness and
intelligibility of speech. In Mandarin, a hierarchical prosodic
structure [10], including prosodic word (PW), prosodic phrase
(PPH), and intonational phrase (IPH), was widely employed to
distinguish different levels of pauses in sentences.

For the task of prosody prediction, there are currently two
basic modeling units. One is based on characters, and the other
is based on words. Both methods have advantages and
disadvantages. The character-based method is simple and
flexible, and is not affected by the result of word segmentation.
But when the amount of data is small, its performance may be
worse than the word-based method. The word-based approach
is more precise because words naturally carry certain prosodic
boundary information. But it is easy to be affected by the
result of word segmentation.

Inspired by WC-LSTM [11], we used the character-based
method, and appended the word information to the
corresponding characters at the same time. In this way, we
retained the word information and alleviated the problem that
the result was affected by the word segmentation result. Figure
3 shows the architecture of concatenated embedding. We still
adopted hierarchical prosodic structure as our main approach.
But in practice, we found that the probability of IPH appearing
in the middle of the sentence is quite low, so we removed this
part of the prediction of IPH and used the punctuations to
determine it.

Figure 3: The architecture of concatenated
embeddings.

For Shanghainese, we used word matching to determine
the corresponding pronunciation based on our Shanghainese
pronunciation dictionary. The module of word segmentation
and prosody prediction remained the same as Mandarin. We
used our own set of phonemes made up of smaller phone units,
containing initial-consonants, medial-vowels, nucleus-vowels,
and coda-consonants. There are totally 100 Shanghainese
phonemes in our system.

2.3. Acoustic model

For both Mandarin and Shanghainese we used the Tacotron2
model for predicting the Mel spectrogram. GMM attention [12]
with 8 mixtures was used for improving the robustness in
synthesizing long sentences. At the same time, we used the
guided attention loss [13] for the alignment.

For Mandarin, we built a multi-speaker model with five
male Mandarin Chinese corpus and one male English corpus.
The available data contained one Mandarin speaker about 13
hours, four Mandarin speakers about 5 hours, and one English
speaker about 12 hours. In order to preserve the characteristics
of each speaker, we added a 16-dimensional speaker
embedding table, and concatenated the speaker embedding
with the original output of encoder part to form new input for
the decoder part. We used the converged multi-speaker model
as the initial model, and then fine-tuned the model with the
Mandarin corpus provided by the organizer.

For Shanghainese, we trained a Tacotron2 model only
with the official data.

2.4. Neural Vocoder

In our Mandarin system, we adopted 10-bits -law WaveRNN
for converting Mel spectrogram to waveform. A multi-speaker
corpus about 25 hours was trained to get the initial model. The
released corpus was used for updating the model. In order to
eliminate the mismatch between training and inference, we
used the ground truth aligned (GTA) [7] Mel spectrogram for
fine-tuning our vocoder.

In our Shanghainese system, we chose MelGAN as the
vocoder to generate the Shanghainese speaker’s voice. We
firstly trained an initial model with multi-speaker dataset, and
then fine-tuned the model with the Shanghainese data. We
found the performance of the original MelGAN was relatively
poor, so we used the following methods for improving quality.

1. Expanding receptive field was helpful to improve the
quality of speech generation and we tried 3, 4, and 5 residual
layers. Finally, 5 residual layers were used.

2. Our generator loss and discriminator loss were the same
as the original MelGAN, but we replaced the feature matching
loss with multi-resolution STFT loss.

The work of Parallel WaveGAN [14] proved that STFT
loss can make results more stable. A single STFT loss includes
the spectral convergence and log STFT magnitude loss. By
combining multiple STFT losses with different analysis
parameters, it greatly helps the generator to learn the time-
frequency characteristics of speech.

3. Results
For Mandarin evaluation, 17 systems including 16 submitted
systems were evaluated. For Shanghainese evaluation, 9
systems including 8 submitted systems were evaluated. The
identifier of natural speech is A, and our system is O.
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3.1. Naturalness evaluation

Figure 4 shows the boxplot of evaluation results of all systems
on Mandarin naturalness. Our system O and system I achieved
the highest MOS of 4.2. But the variance of our system is
smaller, indicating more stability and better consistency.
Figure 5 shows the boxplot of evaluation results of all systems
on Shanghainese naturalness. Our system’s performance on
Shanghainese naturalness is quite poor. There may be many
semantic errors in our Shanghainese frontend. We did not use
the official phonetic transcriptions, which may be the reason
for our poor performance.

Figure 4: Naturalness MOS (Mandarin).

Figure 5: Naturalness MOS (Shanghainese).

3.2. Similarity evaluation

Figure 6 shows the boxplot of evaluation results of all systems
on Mandarin similarity. Our system O achieved the MOS of
4.1. The gap between system O and system I is small. Figure 7
shows the boxplot of evaluation results of all systems on
Shanghainese similarity. Our system’s performance on
Shanghainese similarity is quite poor.

Figure 6: Similarity MOS (Mandarin).

Figure 7: Similarity MOS (Shanghainese).

4. Conclusions
This paper presents the details of our submitted system and
summarizes the results in Blizzard Challenge 2020. In our
system, the DNN-based frontend and backend models were
used in order to achieve natural speech. From the results, we
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believe that there is still substantial space for performance
improvement in Mandarin and Shanghainese text-to-speech
systems.

5. References
[1] H. Zen, K. Tokuda, and A. W. Black, "Statistical parametric

speech synthesis," Speech Communication, vol. 51, no. 11, pp.
1039–1064, 2009.

[2] Z.-H. Ling, S.-Y. Kang, H. Zen, A. Senior, M. Schuster, X.-J.
Qian, H. M. Meng, and L. Deng, "Deep learning for acoustic
modeling in parametric speech generation: A systematic review
of existing techniques and future trends," IEEE Signal
Processing Magazine, vol. 32, no. 3, pp. 35–52, 2015.

[3] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N.
Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., "Tacotron: A
fully end-to-end text-to-speech synthesis model," arXiv preprint
arXiv: 1703.10135, 2017.

[4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
"Wavenet: A generative model for raw audio," CoRR
abs/1609.03499, 2016.

[5] W. Ping, K. N. Peng, and J. T. Chen, "ClariNet: Parallel Wave
Generation in End-to-End Text-to-Speech," arXiv preprint arXiv:
1807.07281, 2018.

[6] D. J, C. M.W, and e. a. Lee K, "Bert: Pre-training of deep
bidirectional transformers for language understanding," arXiv
preprint arXiv:1810.04805, 2018.

[7] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z.
Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., "Natural tts
synthesis by conditioning wavenet on mel spectrogram
predictions," in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 4779-4783.

[8] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N.
Casagrande, E. Lockhart, F. Stimberg, A. v. d. Oord, S.
Dieleman, and K. Kavukcuoglu, "Efficient neural audio
synthesis," arXiv preprint arXiv:1802.08435, 2018.

[9] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J.
Sotelo, A. de Br'ebisson, Y. Bengio, and A. C. Courville, "Mel-
GAN: Generative Adversarial Networks for Conditional
Waveform Synthesis," in Advances in Neural Information
Processing Systems, 2019, pp. 14881-14892.

[10] Chu M, Qian Y, "Locating boundaries for prosodic constituents
in unrestricted Mandarin texts," International Journal of
Computational Linguistics & Chinese Language Processing,
Volume 6, Number 1, February 2001: Special Issue on Natural
Language Processing Researches in MSRA. 2001, pp. 61-82.

[11] Liu W, Xu T, Xu Q, et al., "An Encoding Strategy Based Word-
Character LSTM for Chinese NER," Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 2019, pp. 2379-2389.

[12] A. Graves, "Generating sequences with recurrent neural
networks," arXiv preprint arXiv:1308.0850, 2013.

[13] Tachibana H, Uenoyama K, Aihara S, "Efficiently trainable text-
to-speech system based on deep convolutional networks with
guided attention" 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 4784-4788.

[14] Yamamoto, Ryuichi, Eunwoo Song, and Jae-Min Kim, "Parallel
WaveGAN: A fast waveform generation model based on
generative adversarial networks with multi-resolution
spectrogram," ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 6199-6203.

27


