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Abstract 
This paper presents the Ajmide team’s text-to-speech system 
for the task MH1 of Blizzard Challenge 2020. The task is to 
build a voice from about 9.5 hours of speech from a male native 
speaker of Mandarin. We built a speech synthesis system in an 
end-to-end style. The system consists of a BERT-based text 
front end that process both Chinese and English texts, a multi-
speaker Tacotron2 model that converts the phoneme and 
linguistic feature sequence into mel spectrogram, and a 
modified WaveRNN vocoder that generate the audio waveform 
from the mel spectrogram. The listening evaluation results 
show that our system, identified by P, performs well in terms of 
naturalness, intelligibility and the aspects of intonation, 
emotion and listening effort. 
Index Terms: text-to-speech, Blizzard Challenge 2020, end-to-
end, BERT, Tacotron2, WaveRNN 

1. Introduction 
In order to better understand different speech synthesis 
techniques on a common dataset, Blizzard Challenge was held 
annually since 2005 [1]. This year’s Blizzard Challenge has two 
tasks, hub task 2020-MH1 and spoke task 2020-SS1, which 
provide 9.5 hours of speech data from a male native speaker of 
Mandarin and 3 hours of speech data from a female native 
speaker of Shanghainese, respectively. The participants were 
asked to build text-to-speech system based on the provided data 
and the valid external data. The systems were evaluated by the 
synthetic speech, from the aspects of naturalness, similarity, 
intelligibility, and paragraph performance. 

Until now, there are mainly three types of popular synthetic 
techniques: concatenation synthesis [2,3], statistical parametric 
synthesis [4-6] and deep learning-based synthesis [7-12]. Each 
approach has its own advantages and limitations. Due to the 
significant improvement on audio quality and the simplified 
training pipeline, neural networks based end-to-end TTS 
models have drawn much attention recently.  

For the task 2020-MH1, we have developed an end-to-end 
speech synthesis system based on the deep neural networks. 
Our system has three main components: BERT (Bidirectional 
Encoders Representations from Transformers) [13]-based 
front-end, multi-speaker Tacotron2 acoustic model and 
modified WaveRNN vocoder. To benefit from the external 
speech data of other speakers we employ a multi-speaker 
Tacotron2 model, which include a global speaker embedding. 
For Chinese, G2P, word boundary and prosodic boundary are 
important for synthesized speech. Recently, BERT has showed 
great success in many natural language processing tasks, 
inspiring us to build a BERT-based front end in our system. 

This rest of the paper is organized as follows. Section2 
introduces the MH1 task of Blizzard Challenge 2020. Section 3 
describes our TTS system architecture in detail. Section 4 

presents the evaluation results. Finally, the conclusions are 
drawn in Section 5.   

2. Data and task 
The task 2020-MH1 of this year’s Blizzard Challenge is as 
follows: 

• Hub task 2020-MH1: Mandarin Chinese - About 9.5 
hours of speech data from a male native speaker of 
Mandarin. The task is to build a voice from this data.  

The dataset contains 4365 utterances and corresponding 
text transcriptions. The audio format is one channel, 48kHz 
sampling rate, and 16 bit wav format. 

3. Ajmide TTS System 

3.1. Overall architecture 

The overview of our system is illustrated in Figure 1 with 3 
parts: a BERT-based front-end, Tacotron2 acoustic model and 
WaveRNN vocoder.  

In the training stage, a BERT-based model was trained for 
polyphone disambiguation and prosody prediction. A multi-
speaker Tacotron2 model was trained as the acoustic model. 
And a modified WaveRNN was trained as the vocoder.   

In the inference stage, the test sentences were first analyzed 
into phoneme sequence and linguistic feature sequence by 
front-end. Then the phoneme and feature sequences were 
convert to mel spectrograms via the acoustic model. Finally, the 
mel spectrograms were vocoded into waveform by the 
WaveRNN vocoder. 

3.2. Data 

3.2.1. Data preprocessing 

First, we checked the text and corresponding audio. Some 
inconsistencies between the text and audio were found, so 
manual annotations were performed including text transcription 
and prosodic boundary. Finally, the audio files were down 
sampled to 22 kHz.  

3.2.2. External data 

The following external data was employed to train the models 
in our system: 

• an internal TTS dataset, about 71.5 hours of speech data 
from several male native speakers of Mandarin 

• an internal Chinese polyphone dataset 
• the text and prosody label of data-baker’s open source 

TTS dataset [14] 
• the pre-trained RoBERTa model for Chinese [15] 
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Figure 1: The architecture of Ajmide TTS system. 

3.3. Front-end 

In our system, the front-end is a pipeline-based system, which 
consist of text normalization (TN), Chinese word segmentation 
(CWS), part-of-speech (POS) tagging, grapheme-to-phoneme 
(G2P) conversion, and prosody prediction. In addition, the 
CMU Pronouncing Dictionary [16] is adopted for English 
words processing. The front-end analyzes the text, converts the 
sentence to phoneme sequence and outputs the phoneme level 
linguistic features. 

A rule based TN is employed to process the special symbols. 
For the procedure of CWS and POS, jieba [17] is used.  

We trained a BERT-based model for the polyphone 
disambiguation with the pre-trained Chinese RoBERTa model. 
An internal polyphone dataset, which includes 145 Chinese 
polyphonic characters, was used.  

For the procedure of prosody prediction, manual annotation 
was performed on prosodic boundary for MH1 dataset. And the 
prosody labels from data-baker dataset were also used. We first 
trained the model by the data-baker prosody labeled sentences, 
then fine-tuned the model by the prosody labeled sentences of 
MH1. The prosody prediction model is also a BERT-based 
model. 

The model size of the BERT backbone is 12 transformer 
blocks with hidden size of 768 and self-attention heads of 12. 
A linear classifier is adopted after the BERT-base. The loss 
function is cross-entropy loss. The polyphone disambiguation 
model and prosody prediction model were trained separately 
with the batch size of 32. 

Considering the text of MH1 includes English words, we 
use the International Phonetic Alphabet (IPA) [18] phoneme set. 
Both pinyin and English words were converted to the IPA 
phoneme sequence.   

For an input sentence, the output sequence of the front end 
contains the phoneme, word segment labels, POS labels and 
prosodic symbols.  

3.4. Acoustic model 

The sequence-to-sequence architecture for generating the 
acoustic features simplifies the traditional speech synthesis 
pipeline, and the synthetic speech can achieve a high MOS. 
Therefore, we use Tacotron2, an end-to-end style model, as our 
acoustic model. The acoustic feature is an 80-dim mel-
frequency spectrogram with 50 ms frame size, 12.5 ms frame 
hop, and a Hann window. The reduction factor of the model is 
set to 1. 

Although Tacotron2 can produce satisfactory speech for 
English TTS system, we found that the it’s not good enough for 
Chinese, especially in speech pauses and prosody stability. To 
improve the performance in Chinese TTS, we employ the 
phoneme and the additional linguistic features as the input 
sequence of Tacotron2.     

To benefit from the external audio data of other speaker, a 
speaker embedding module is added to Tacotron2. The speaker 
embedding module consists an embedding layer and an expand 
module. The speaker embedding dimension is 128. The speaker 
id is converted to a high dimension vector and expanded to the 
length of the encoder output sequence. The concatenation of 
encoder output and speaker embedding output is fed to the 
decoder.  

During the training process, we adopted a 71.5-hour male 
data to train the multi-speaker Tacotron2 model and fine-tuned 
the model with the MH1 data. First, a multi-speaker Tacotron2 
model was trained on both 71.5-hour male dataset and the MH1 
dataset with a batch size of 32, using Adam optimizer with a 
fixed learning rate of 1e-4. Then the model was fine-tuned with 
the MH1 dataset only.  

In our experiments it was hard to achieve an alignment with 
the only MH1 dataset. However, in the fine-tuning procedure 
the Tacotron2 model quickly got an alignment on the same 
dataset. Figure 2 shows the attention alignments of a validation 
sample. 

 

 
Figure 2: Attention alignments. 

 

text 

waveform 

phoneme and feature sequence 

BERT-based Front-end  

Tacotron2 
 

WaveRNN 
 

 

mel spectrogram 

76



3.5. Vocoder 

In our system, we choose a modified WaveRNN [19] as the 
vocoder. The audio was applied a 10-bits µ-law quantification.  

In the training phase, first, we trained the model on all data, 
including an internal 71.5-hour dataset and the MH1 dataset, 
using the ground truth features. The cross-entropy loss was 
employed. The model was trained with a batch size of 128, 
using Adam optimizer with a constant learning rate of 1e-4.  

Then a GTA fine-tuning was performed on the MH1 dataset. 
The Tacotron2 predicted mel spectrograms were used to fine-
tune the WaveRNN. Experiments show that the GTA fine-
tuning can significantly reduce the noise and improve the audio 
quality. 

4. Evaluation 
In this year’s challenge, there are 17 systems in total, including 
16 participating teams and one natural speech. System A is 
natural speech and system P is ours. 

Table 1: Evaluation sections for Task 2020-MH1. 

 Sections Detailed Description  
section 1  similarity - news sentences 
section 2 similarity - PSC sentences 
section 3 naturalness – news sentences 
section 4 naturalness – PSC sentences 
section 5 various criteria - news paragraphs 
section 6  intelligibility 

 
The evaluation comprised six sections shown in Table 1. 

The results are based on all the listeners’ responses, including 
paid listeners, experts and volunteers. Finally, our system has 
achieved good results in some criteria for the Challenge. Details 
are as follows.  

4.1. Naturalness test 

In naturalness test, listeners listened to one sample and chose a 
score which represented how natural or unnatural the sentence 
sounded on a scale of 1 [Completely Unnatural] to 5 
[Completely Natural].  

Figure 3 shows the boxplot of evaluation results of all 
systems on naturalness. Our system has an average score of 3.9 
with 1.04 standard deviation. Besides, Wilcoxon signed rank 
tests show that there is no significant difference between the 
systems of B, C, D, E, F, K, L, M and P in naturalness test. 
Among the 16 systems participating in the challenge, our 
system is outperformed by two systems (I and O).  

4.2. Similarity test 

The similarity score represents how similar the synthetic voice 
sounded to the voice in the reference samples on a scale of 1 
[Sounds like a totally different person] to 5 [Sounds like exactly 
the same person]. 

The boxplot of similarity evaluation results is presented in 
Figure 4. The similarity score of our system for all listeners is 
3.7 with 1.15 standard deviation.  

4.3. Intelligibility test 

In this test, the listeners were allowed to listen to each sentence 
at most twice then typed in what they heard.  

Pinyin error rates with tones (PTER) of all participant 
systems are presented in Figure 5. When evaluated by all 
listeners, the PTER of our system is 0.097 with 0.15 standard 
deviation. The results indicate that our system performs well on 
intelligibility. Besides, Wilcoxon signed rank tests shows that 
there is no significant difference between our system and the 
natural speech system.   

4.4. Paragraph performance 

In paragraph test, the listeners listened to one whole paragraph 
from news domain. Seven aspects of speech, including overall 
impression, pleasantness, speech pauses, stress, intonation, 
emotion, and listening efforts are evaluated separately. The 
score is on a scale of 1 to 60 for each aspect.  

Overall results are shown in Figure 6. The mean opinion 
scores of our system are listed in Table 2. In aspects of 
intonation, emotion and listening effort, our system achieves 
good performance. 

Table 2: Paragraph listening test scores of our system. 

 Criterion MOS  
overall impression  40 
pleasantness 39 
speech pauses 40 
stress 40 
intonation 41 
emotion  41 
listening effort 42 

 

4.5. Discussion 

Our system achieved a good score of PTER. We believe that it 
was benefit from the accurate front end processing, especially 
the polyphone disambiguation, tone sandhi and Erhua 
processing. The BERT-based model obtained a satisfying 
performance on Mandarin G2P. 

We have reviewed our synthetic audio samples and found 2 
types of defects that may lead to the performance degradation. 
The prosody and stress error may decrease the similarity and 
some aspects of paragraph performance, such as pleasantness 
and overall impression. For the paragraph audio samples, we 
synthesized the utterances separately and concatenated into the 
whole paragraph audio. The difference between two adjacent 
audio utterances would introduce a negative effect on paragraph 
scores. In the future, we will study the method for long-form 
speech synthesis. 
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Figure 3: naturalness scores for all listeners. 

 

 

Figure 4: similarity scores for all listeners. 

 
Figure 5: Pinyin error rate with tones scores for all 

listeners. 
 

 
Figure 6: paragraph scores for all listeners. Natural 
speech system is shown in yellow, our system in red 

and other participants are in green. 

 

5. Conclusions and future work 
This paper presents the details of our submitted speech 
synthesis system and the evaluation results in Blizzard 
Challenge 2020. We built an end-to-end style acoustic model 
following with a WaveRNN vocoder. Our system achieved 
good performance on some criterion for the Challenge such as 
naturalness, intelligibility, and emotion. But the performance 
on similarity is not satisfiable.  

In future work, we will make more attempts in the 
expressive speech synthesis. At the same time, we will study 
the training techniques to improve the performance on the out-
of-domain sentences.  
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