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Abstract

This paper describes the DKU text-to-speech synthesis system
built for the 2019 Blizzard Challenge. The task of this year’s
challenge is to build a synthetic voice that is similar, expres-
sive and clear as the given data collected from an internet talk
show. The DKU speech synthesis system adopts the end-to-
end speech synthesis architecture named Tacotron2. First, we
analyze the data provided by the organizers and preprocess the
data to make it appropriate for text-to-speech synthesis model
training. The preprocessing phase includes audio-text aligning,
segmentation and manually labeling the pinyin sequences. We
pre-train a synthesis model trained with clean Mandarin Chi-
nese speech synthesis dataset and finetune the model using the
preprocessed data. In the synthesis phase, we preprocess the
texts in evaluation set to obtain the appropriate phoneme se-
quences for synthesis. After feeding the phoneme sequences
into the synthesis system, we use the Griflim algorithm to es-
timate the phase and convert the output spectrogram to audio.
We report our result based on the system performance provided
by the organizers.

Index Terms: Tacotron, speech synthesis, transfer learning

1. Introduction

The annual Blizzard Challenge since 2005 aims to explore ad-
vance techniques in building corpus-based speech synthesizers
on a challenging database. The task 2019-MHI1 of Blizzard
Challenge 2019 is to deliver an expressive synthetic voice sim-
ilar to a native Chinese speaker from an internet talk show. Re-
garding the task, the organizers provide eight hours of speech
and the corresponding texts. This is the first year we partici-
pate in Blizzard Challenge. We train our synthesizer using the
end-to-end neural network framework Tacotron2 [1] under the
transfer learning manner.

There are three main approaches for text-to-speech synthe-
sis, which are unit selection, statistical parametric speech syn-
thesis (SPSS) and speech synthesis using end-to-end neural net-
work architecture. The synthesis speech is produced by con-
catenating natural speech units (segments) when adopting unit
selection technique for TTS [2]. It has high quality at wave-
form. However, the natural variations of speech are lost during
automated segmentation of the waveforms, resulting in audible
discontinuity and hits in the output [3]. SPSS [4] is based on
mathematical approach to generate speech signal and there are
many previous Blizzard Challenge partcitipated teams adopted
SPSS as their basic framework [5, 6, 7]. SPSS can produce
smooth and stable speech. On the other hand, SPSS suffers
from distinguishable unnaturalness with buzzy output speech
[8]. The TTS synthesis systems using end-to-end neural net-
work architecture reach state-of-the-art performance in recent
years [1, 9, 10]. This approach is able to compute the speech
directly from graphemes or phonemes. Followed by the Griffin-
Lim algorithm [11] or WaveNet [12] vocoder, Tacotron2 [1]

is able to yield synthetic speech that approaches the real hu-
man speech. However, it is hard to control the speaking style
when using the end-to-end speech synthesis architectures. Con-
cerning spontaneous speech, speech synthesis model based on
end-to-end framework has better performance comparing to the
other two techniques. Therefore, we choose to adopt Tacotron2
for building the text-to-speech synthesis system for task 2019-
MHI.

To meet the Blizzard Challenge 2019, our Tacotron2-based
DKU speech synthesis system is trained as follows. Firstly, we
use our automatic speech recognition (ASR) system to perform
force alignment on the audio-text pairs. Base on the likeli-
hood and time boundary information, we remove those audio-
text pairs with low likelihood regarding wrong transcription
and then segment the texts into sentences. Secondly, we adopt
grapheme-to-phoneme technique to obtain the pinyin sequence
(phoneme representation in Mandarin Chinese) of each audio-
sentence pair. In addition, we fix the pinyin sequence manually
to make sure the training pinyin label is correct. Concerning
training strategy, we pre-train the Tacotron2 model using a clean
Mandarin Chinese database of approximately 9.6 hours. Then
the segmental audio-pinyin sequence pairs are fed into the pre-
trained Tacotron2 model for fine-tuning. In the synthesis phase,
we use a rule-based text normalization method to convert the
non-natural language tokens in test set to natural language to-
kens. Then we break the input text into short sentences and
convert the sentences into pinyin sequences. Besides, we use
a rule-based method according to the sandhi problem to cor-
rect the tone annotations. The predicted linear spectrograms is
generated by feeding the pinyin sequences into the Tacotron2
model. Griflim algorithm is used as the vocoder for convert-
ing the spectrogram to audio in our approach. Finally the audio
sentence-level segmental speech are concatenated into a long
audio matching the texts in the provided evaluation set.

The rest of this paper is organized as follows. Section 2
describes the data cleaning method. Section 3 presents the de-
tails of end-to-end neural network framework called Tacotron.
The text analyse method in evaluation phase and subjective re-
sults are shown in Section 4. Finally, the conclusions is given
in Section 5.

2. Data Processing
2.1. Raw Data

The provided dataset of 2019 Blizzard Challenge contains 480
audio-text pairs. The audios are compressed in MP3 format.
The duration of every audio is 60 seconds. They are sponta-
neous speech of one male speaker talking about all kinds of
ideas and thoughts on modern society. Each audio has a nicely
organized transcript that is not exactly match the content in the
corresponding audio since the transcript was refined by remov-
ing some speaking characteristics in spontaneous speech, like
word repetitions, filled pauses, modal particles, etc.
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Figure 1: Architecture of Tacotron

2.2. Align and Segment

We convert the audio from MP3 format to waveform audio file
format sampling in 16kHz, which is more appropriate for acous-
tic feature extraction. Then we perform force alignment us-
ing our automatic speech recognition (ASR) system between
the text transcripts and audios to obtain the time-boundary in-
formation. 18 utterances is removed since the alignment log
likelihood is extremely low and we found out that those tran-
scripts do not match the content in the corresponding audios
at all. The remaining 462 utterances are segmented into short
audio-sentence pairs base on the time-boundary information
and the punctuations in transcript. Furthermore, we remove
those segments with duration longer than 12.5 seconds. At last,
the total duration of the processed data set is 6.42 hours. The
transcript labeled with Mandarin characters are converted into
pinyin(phoneme) sequence using pypinyin toolkit [13]. This
will be introduced in section 2.3. Finally, the pinyin sequence
of the selected utterances, especially the tone annotations, are
fixed by native speakers to match the speech content in the au-
dio.

2.3. Text Processing for Mandarin Chinese

We could not intuitively get the pronunciation of the Chine-
ses text in written form unless we convert it into phoneme se-
quences. The phoneme sequence is more suitable and stable for
Mandarin Chinese TTS system. The mapping and alignment
between the phoneme sequence and acoustic feature sequence

are more reliable. Therefore, we employ the phoneme sequence
as the input of our system. The Mandarin Chinese phoneme,
called pinyin, can be divided into three parts: consonant, vowel
and tone respectively. For example, the phoneme “’shangl” can
be separated into “sh”, “ang” and “1” where “sh” is the con-
sonant, “ang” is the vowel and “1” denotes the tone. Usually,
we need blank spaces to perform disambiguation between char-
acters when converting the text into the pinyin sequence. For
example, the corresponding phoneme sequence of the transcript
“ESRRSAES (It is a nice weather today) is “jinl tian1 tianl
qi4 bu2 cuo4”.

3. System Description

The Tacotron2 system consists of two components, (1) a recur-
rent sequence-to-sequence feature prediction network with an
attention module which predicts a sequence of linear spectro-
gram frames from a phoneme sequence, and (2) the vocoder
module using Griffin-Lim algorithm to convert the spectrogram
frames to audio. The detail of the first component will be pre-
sented in the following subsections.

3.1. Acoustic Feature Representation

In our approach, we choose the linear-frequency spectrograms
as a high-level acoustic representation to bridge the two com-
ponents. Short Time Fourier Transform [14] (STFT) is used to
analyze the time-domain audio signal in the frequency domain.
The linear-frequency spectrograms can embody more acoustic



information yet it is much harder for neural networks to imi-
tate such acoustic representation. It is more appropriate to in-
troduce a low-level acoustic representation as a temporary out-
put. The mel-frequency spectrogram is considered as a good
acoustic feature with lower dimensionality. The mel-frequency
spectrum is obtained by applying a non-linear mel scale trans-
form on the frequency axis of STFT. Then a particular number
of mel-filters are designed to summarize the frequency content
according to the human auditory system.

3.2. Model Architecture

Tacotron is designed as an attention-based sequence-to-
sequence model involving three modules: the encoder, decoder
and attention mechanism. The architecture of Tacotron system
is shown in Figure 1.

3.2.1. encoder

The encoder is composed of several convolutional layers fol-
lowed by bi-directional long short-term memory (BLSTM) [15]
layers to obtain the interactive and long-term correlations be-
tween elements in the sequence. This structure produces hidden
representation from character or phoneme embedding sequence.
The hidden representation is then fed into the attention mecha-
nism to obtain a fix-length context vector. The input phonemes
are represented using a learned 512-dimensional character em-
bedding. Some necessary batch-normalization and dropout lay-
ers are also involved to prevent it from over-fitting.

3.2.2. attention mechanism

The attention mechanism used in encoder-decoder architecture
is to allow the decoder to refer to different parts of the source
encoding sequence at each decoding step. This mechanism has
widely been used in many sequential machine learning fields
including Speech Recognition [16], Machine Translation [17],
etc. However, unlike machine translation, speech synthesis is
a streamlining task and the attention is undoubtedly moving
forward as time-related decoding step increases. In this case,
a location-sensitive attention [18] is applied to the output of
the encoder. The location-sensitive attention extends the ad-
ditive attention mechanism [19] to employ cumulative attention
weights from previous decoder time step as an additional fea-
ture. In other words, this mechanism enables the model to move
forward consistently through the input sequence. Additionally,
it mitigates potential failure cases like repeated subsequences
or ignored subsequences. The attention mechanism in Tacotron
summarizes the full sequence from the encoder as a context vec-
tor consumed by the decoder to predict the acoustic feature rep-
resentation at each decoder time step.

3.2.3. decoder

The decoder is an autoregressive recurrent neural network. At
each decoding time step, it predicts a mel-spectrogram frame
given the previous decoder output and a context vector gener-
ated from the attention mechanism. Tacotron use two fully con-
nected layers as the pre-net applied to the previous output and
followed by a stack of uni-directional LSTM to maintain the
long-term dependencies. The context vector and LSTM out-
put is concatenated and passed through two separately projec-
tion layers for mel-spectrogram prediction and stop token pre-
diction respectively. A post-net consisting of several convolu-
tion layers is applied to perform residual reconstruction of mel-
spectrogram prediction. Finally, the linear-spectrogram predic-

tion is generated by feeding the residual mel-spectrogram pre-
diction into a complicated network named CBHG and a linear
projection layer. The CBHG network consists of convolution
layers, fully connected layers and GRU [20] recurrent layers.

3.3. Model Setup

We use librosa [21] Python package to perform Short Time
Fourier Transform [14] (STFT) on the audio to obtain the acous-
tic parameters. Our model aims to predict the normalized en-
ergy of STFT. The number of mel-spectrogram channels is set
to 80 while the dimensionality of the linear channels is 1024.
Since our model is trained with audio sampling in 16 kHz, the
window size and hop size is set to 800 and 200 respectively. The
minimum frequency in extracting acoustic feature is 55SHz. All
other network hyper-parameters remain unchanged. We add the
tone annotation (represented by Arabic number 1 to 5) in the
embedding character dictionary to allow our model to mimic
the speaking style produced by different tone.

3.4. Model Training Procedure

We pre-train our system using the BZSYP database [22]. The
speaker is a Chinese female in age around 20. The sample
rate of the audio is 48 kHz. All the texts, phoneme sequence
and prosodic boundaries are well-labeled in this database. We
downsample the audio to 16 kHz for training a matching model
for adaptation. The BZSYP database has 10.38 hours of audio
data. The phoneme sequence and texts have carefully been rec-
tified with less than 2% and 0.2% error rate as described author-
itatively. The training steps for the pre-trained model is 200000.

Then we use the processed data (as described in Section 2)
to further fine-tuning the model. In this case, the training steps
for adaptation is set to 185000.

4. Synthesizer and Results
4.1. Text Analysis

There are 2546 texts in the evaluation data provided by organiz-
ers. The evaluation set contains the transcripts of talks of the
same speaker, transcripts of the daily spoken speech, transcripts
in written language, poems, etc. However, the text is too rough
for our synthesis system. A front-end processing module is used
to obtain the correct pinyin sequences of the provided text for
our synthesizer.

4.1.1. text normalization

There are non-natural language tokens in the given texts. We
use a rule-based method to convert those tokens into natural
language tokens. Besides, this method could eliminate the am-
biguity caused by non-character Chinese strings of various for-
mats. Thus the system can synthesize the correct pronunciations
of these non-natural tokens. For example, a rule-based text nor-
malization method includes such thing as identifying and ex-
panding abbreviations, recognizing and analyzing expressions
such as dates, fractions, and amounts of money, and so on. [14]

4.1.2. text segment and grapheme-to-phoneme conversion

We segment the text into sentences with a length of fewer than
30 characters. Then Pypinyin[13] is used to convert the char-
acter sequence into pinyin sequence. Generally, the tone sandhi
problem in Mandarin strongly affects the performance of the
synthesis system and results in unnatural synthetic speech[23].
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Figure 2: Mean Opinion Scores on naturalness (all listeners)

There are five phonologically distinctive tones in Mandarin,
represented by tone 1 to 5. The sandhi problem can be described
with rules including the tone of the former pinyin become tone
2 when two consecutive pinyins with tone 3 pronounce. In order
to deal with the problem of contextual variable pronunciations,
we develop a rule-based algorithm to estimate the accurate tone
according to the sandhi rule in Mandarin Chinese. After synthe-
sizing the speech of all sentences, the short audios in sentence-
level are reconstructed to long audios in text-level matching the
provided evaluation text set, and short silence is added between
sentences concerning the punctuation mark.

4.2. Subjective Evaluation Results

The evaluation is conducted by paid listeners, online volunteers
and speech experts. Our system is labeled as “D” in the chal-
lenge. Whereas system “A” is the natural speech and system
“B” is the synthetic voice built by merlin[24]. System “C” to
“Z” are all participated teams in 2019 Blizzard Challenge.

The subjective evaluation is conducted according to three
aspects:

* Naturalness, this evaluates how natural that the syn-
thetic speech sound comparing to the natural speech.
Listeners evaluate the given speech in scale 1-5, the
higher the value, the better the naturalness.

 Similarity, this evaluates how much the synthetic voice
sounds like the target voice. Listeners evaluate the given
synthetic voice in scale 1-5.

« Intelligibility, this evaluates how much can people un-

derstand the meaning of the synthetic speech. In this
task, listeners are asked to write down what they hear
from the speech. And the intelligibility is evaluated by
the pinyin error rate, with and without tone respectively.

Figure 2 presents the overall MOS concerning the natural-
ness of all systems. Figure 4 shows the pinyin error rate without
tone evaluated by paid listeners of all systems. Figure 5 shows
the pinyin error rate with tone evaluated by paid listeners of all
systems. And figure 3 shows the overall MOS concerning the
similarity of all systems. As shown in the figures, our system
performs moderately among all participated teams.

5. Conclusions

In this paper, we present our DKU synthesis system based on
Tacotron end-to-end neural network architecture. Our system is
trained under the pre-training manner for 2019 Blizzard Chal-
lenge. The subjective evaluation of our team is in the medium
level of all participated systems.

However, we could improve our system in the following
ways. The front-end module that converts the text with non-
natural symbols to correct phoneme sequence should be im-
proved. This module includes the text normalization module,
grapheme-to-phoneme conversion module and the sandhi pro-
cess module. Especially in grapheme-to-phoneme conversion
module, we do not address the homograph problem called poly-
phone disambiguation in Mandarin Chinese. We did develop a
polyphone disambiguation system for Blizzard Challenge. But
the performance of it is not good since there exists mismatch
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Figure 3: Mean Opinion Scores on similarity (all listeners)
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Figure 4: Pinyin error rate without tone (paid listeners)

of data materials between the training data of the polyphone
disambiguation system and the evaluation text set of the 2019
BLizzard Challenge.

Besides, the training steps for finetuning the pre-trained
model is not enough for 2019 Blizzard Challenge because of
the variability of the training speech concerning speaking speed,
prosody and so on. A prosody estimation module followed
by the implicit prosody parameters extraction module could
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Figure 5: Pinyin error rate with tone (paid listeners)

also improve our system refer to the similarity and naturalness.
Finally, a better vocoder, like Wavenet[12] or Waveglow[25]
could be used to convert the mel-frequency spectrogram to
speech with better quality.
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