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Abstract

This paper describes the text-to-speech (TTS) system that we
used for the Blizzard Challenge 2019. Unlike the challenge held
before, the corpus of this year is composed of Chinese Mandarin
from a male Chinese speaker. We build a cascade system for
this task. Given input text, the linguistic features are extracted
by an untrainable text analyzing system as a 476-dimensional
vector, which is transformed to 80-dimensional mel-spectrum
by a DCTTS-based acoustic model. The mel-spectrum is then
utilized as local conditions by a WaveRNN-based vocoder to
generate p-law encoded 9-bit audio, and finally decoded to 16-
bit. Listening evaluation results shows that our system, with
indicator Y, performs well in terms of the naturalness and the
similarity with the original speaker, and the intelligibility needs
to be improved.

Index Terms: speech synthesis, neural network, Blizzard 2019

1. Introduction

The text-to-speech (TTS) system has attracted the attention of
many researchers, due to its importance in human-computer in-
teraction. A conventional TTS system is essentially composed
of three parts, a text analyzing system that extracts linguistic
features from the text input, an acoustic model transforming
linguistic features to acoustic features, and a speech synthesis
system, or so-called vocoder, that generates speech audio based
on acoustic features. In some cases, the text analyzing system
and the acoustic model are also called the front-end, and the
synthesis system is referred to as the back-end, which will uti-
lize the linguistic and acoustic features collectively [1].

The conventional text analyzing system typically consists
of tokenization that normalizes the input text, and grapheme-to-
phoneme conversion that produces the well-designed linguistic
features, which include grammatical properties and phonologi-
cal features. Then the acoustic model transforms these verbal-
based features to prosody-based features, such as logarithmic
fundamental frequency (log F0), phone duration. The correla-
tion between text and speech has been explored for a long time,
and the prior knowledge is well integrated into these delicate
handcrafted features.

The speech synthesis system has been dominated by two
approaches. The first is the unit-selection based concatena-
tive synthesis, which selects the appropriate audio units from a
natural speech database according to the linguistic and acous-
tic features [2]. The second one is the statistical parametric
speech synthesis (SPSS), which learns from the speech database
and forms a generative model, mostly a hidden Markov model
(HMM). Meanwhile the so-called hybrid synthesis combining
these two methods, uses a statistical parametric model to guide
which units should be selected [3} 4]. We prefer to categorize
them as concatenative synthesis and generative synthesis to em-
phasize whether or not a speech database is required during
synthesis. The unit-selection based concatenative synthesis is

known for its high naturalness since it reuses the real speech,
but suffers from its lack of flexibility. The generative synthe-
sis has the main advantage of being able to generate different
kinds of speech (e.g., change the speaker) by transforming its
model parameters. However, the generated speech might be
slightly inferior to that of the concatenative synthesis in terms
of naturalness[5]].

With the great improvement achieved by deep neural net-
works (DNNs) in many areas (e.g. computer vision, nature lan-
guage processing, efc.), many attempts have been made to in-
corporate DNN into speech synthesis. The main idea is to esti-
mate a more accurate DNN-based model to replace the original
structure that relies heavily on prior information [0l [7].

For the text analyzing system, Deep Voice 1&2 [8, 9] and
Char2Wav [10] are intended to extract linguistic features from
text directly using the black box DNN model, instead of using
the well-designed classic algorithms.

For the acoustic model, Tacotron 1&2 [11} [12] employ
a RNN-based sequence-to-sequence model to generate mel-
spectrum, a well-behaved acoustic feature for the following
vocoder. The RNN-based acoustic model has been widely ac-
cepted as the state-of-the-art. However, this model exploits
S0 many recurrent units, resulting in high computational bur-
den and slow convergence. Since CNNs can get more ben-
efits from GPU’s acceleration than RNNs, the fully convolu-
tional sequence-to-sequence model is introduced in Deep Voice
3 [13]. DCTTS [14] adopts a similar CNN-based acoustic
model, and reaches the state-of-the-art performance with signif-
icantly improvement of the convergence speed than Tacotron.

For the speech synthesis system, according to [15], DNN
leads to more improvement on the generative synthesis over the
unit-selection based concatenative synthesis. WaveNet [16], a
fully convolution neural network, combines linguistic features
and acoustic features as local conditions, and produces speech
that even more natural than that of the concatenative systems.
However, during the synthesis phase, WaveNet has to generate
audio point by point, so it runs very slowly thus unsuitable in
real-time systems. In addition, the synthesis process is unsta-
ble and occasionally produces high-energy broadband noise, as
discussed in another study [17]. This instability causes a sig-
nificant drop in both naturalness and intelligibility as a conse-
quence. Meanwhile, RNN-based systems can be expected to
provide a more stable output due to the memory of historical
information in their hidden state [18]. WaveRNN [19]] can gen-
erate real time high-quality audio even on a mobile CPU, with
performance that still matches the state-of-the-art. This com-
petitive compact recurrent neural network has been further im-
proved in [18]]. And there are also some other networks that
show the benefits of DNN-based generative systems, such as
Waveglow [20]] and ClariNet [21]].

We reviewed all the 10 papers in Blizzard Challenge 2018,
and found that there are 4 concatenative systems and 6 gener-
ative systems, all based on DNNs. USTC’s concatenative sys-
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Figure 1: The flowchart of our proposed TTS system.

tem [22] got the best performance, demonstrating the superior-
ity of the concatenative system. However, it has the inevitable
disadvantage of the reliance on the specific speech database,
which limits its application on resource-constrained end de-
vices, e.g. mobile phones and smart speakers. Therefore, the
study and implementation of the generative synthesis is still
very appealing. Thus, for Blizzard Challenge 2019, we used
a two-stage system with a DCTTS-based acoustic model and a
WaveRNN-based vocoder.

The paper is organized as follows. Section 2 describes our
TTS system, followed by the evaluation results in section3. The
conclusions are drawn in section4.

2. TTS System

Tacotron2 [12]] combines the neural acoustic model and the
neural vocoder to an end-to-end system, with mel-spectrum as
the intermediate feature representation. The acoustic model
and vocoder can be trained separately, which inspired us to try
more combinations of the state-of-the-art acoustic models and
vocoders.

As shown in Figure[T] our proposed TTS system consists of
three sub-modules, the untrainable text analyzing system, fol-
lowed by the trainable acoustic model and the vocoder. The
acoustic model is mainly based on DCTTS[14] and Deep Voice
3[113], and the vocoder is mainly based on WaveRNN|[19]] with
Amazon’s modification[[18]. The implementation details will be
presented in below subsections, respectively.

During the training phase, the <text, audio> pairs were se-
lected from the given dataset, then the linguistic features and the
mel-spectrum were extracted and used as the input and the tar-
get to train the acoustic model. As addressed in [[17], the incon-
sistency between the mel-spectrum distributions of training and
decoding (synthesizing) may causes unstable synthesis. Thus
we jointly fine-tuned the acoustic model and vocoder, so that
the vocoder can learn the distribution of the mel-spectrum gen-
erated by the acoustic model. During synthesis phase, the syn-
thesized speech was generated by passing the given text through
the left bottom-up path depicted in Figure [T}
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Figure 3: Components of the acoustic model. The ConvBlock
and the PreNet, respectively.

2.1. Data processing

About 8 hours of speech data from an internet talk show by a
well-known Chinese character, Zhenyu Luo, was provided, in-
cluding audios and the corresponding texts. The given .mp3
files were first transformed to .wav files, and then the 80-
dimensional mel-spectra were extracted with 40 ms frame size
and 10 ms hop size. The corresponding texts were manually
embedded into 476-dimensional vectors using our own text an-
alyzing system. The embedded vectors consisted of one-hot
encoded phonemes, tones, part-of-speech, prosodic boundaries
and the position information. The prosodic boundaries were
composed of phoneme boundaries, syllable boundaries, phrase
boundaries, secondary phrase boundaries, etc. The position in-
formation was composed of the forward and backward positions
of the phonemes and the syllables, etc.

2.2. Acoustic Model

In our implementation, the DCTTS has been modified with ref-
erence to Deep Voice 3. For the sake of brevity, we will still
refer to it as DCTTS. As shown in Figure 2] the DCTTS has



three sub-modules, a text encoder, an audio encoder and an au-
dio decoder, which are connected by an attention module. The
text encoder includes a PreNet followed by four stacked convo-
lution blocks. As shown in Figure[3] the PreNet consists of two
stacked fully-connected layers followed by a ReLU and a tanh
non-linearity activation, respectively. The convolution block is
a highway network [23] with dropout rate of 0.05 before the
convolution layer. The output of the text encoder is divided into
value and key, which are then fed into the attention module. The
output of the audio encoder are used as query to get the corre-
sponding feedback from the attention module. Similar to the en-
coder, the audio decoder has a PreNet followed by four stacked
convolution blocks, then the mel-spectrum and the stop-token
are generated by two fully-connected layers respectively.
The training target is to minimize the loss function below:

L= |AxW|
+Z|ymel _gmel‘ (1)
— [Ystoplogstop + (1 — Ystop)log(1 — Fstop)]-

The first term is the guided attention loss, where A is the at-
tention matrix from the attention module, and the weight matrix
W is calculated as

(n/N—t/T)?

Wn,t =1l-e 29 ) (2)

where NV and T represent the number of frames of linguistic
features and mel-spectra, respectively, and g is the adjustment
factor, which is set to 0.2 [14]. By minimizing |A x W/, the
attention matrix A is “guided” to be “nearly diagonal”, which
satisfies the constraint that the system must pronounce the word
one by one in the order of the corresponding text sequence. To
allow the attention of consecutive mel-spectrum frames on the
same linguistic feature, we relax the strong “incremental” con-
straint by thresholding W as

1 Whe >«
Whie = T 3
’ {0 W 3

where a is the mean value of .

For the other two terms, y and ¢ represent the ground truth
and the predicted output, respectively. The subscripts mel and
stop stand for the mel-spectrum and the stop-token, respec-
tively. For the mel-spectrum prediction, L1 loss is used to re-
duce the impact of outliers, and cross-entropy loss is used for
the prediction of the stop-token. During the training process, the
teacher-forcing scheme was used that the audio encoder module
takes ground truth mel-spectrum as input rather than the corre-
sponding prediction. The Adam [24] optimizer with constant
learning rate le-4 was adopted. During the synthesis process,
the output mel-spectrum of the audio decoder was fed back to
the audio encoder in an autoregressive form.

2.3. Vocoder

As shown in Figure [d] WaveRNN is composed of a condition
module that encodes mel-spectrum input to local conditions,
and an autoregressive module that generates audio output ac-
cording to given conditions. In the condition module, mel-
spectrum is passed through 2 branches. One is progressively
upsampling with factors 5, 6 and 8, using stretch followed by
convolution. The other is 240-fold upsampling directly after
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Figure 4: Vocoder. The modified WaveRNN architecture.

10 stacked residual blocks. The upsampling factor 240 corre-
sponds to the 10 ms hop size at 24 kHz sampling rate. There-
fore, the number of upsampled feature frames is equivalent to
the number of samples of the final audio. The stretch opera-
tion duplicates each frame along the time dimension. The two
results are concatenated together as the final output of the con-
dition module. In the autoregressive module, the corresponding
frame of the condition module’s output at current time step is
concatenated with the embedded audio signal from the previ-
ous time step. Then the combined features are fed into a sin-
gle layer GRU with 896 nodes followed by two fully connected
layers. Then a softmax layer is used to predict the categorical
distribution.

The original WaveNet predicts a 256-dimensional categori-
cal distribution for each time point to generate p-law encoded 8-
bit audio, which is then decoded to 16-bit. Unlike the traditional
Gaussian distribution, the categorical distribution does not in-
troduce any hypothetical prior information, so it can model ar-
bitrary distributions. However, the quantization in the p-law
encoding process will inevitably lead to the loss of information,
thus reducing the upper limit of the model. In order to generate
16-bit audio directly, the mixture of logistics (MoL) distribution
is introduced in Parallel WaveNet [25]. However, MoL may
cause instability in the training process, so as a compromise,
we set the training target as p-law encoded 9-bit audio.

During the training process, the negative log likelihood
loss was calculated between the categorical distribution and
the ground truth distribution, the corresponding one-hot vector.
The autoregressive module was trained in the teacher-forcing
scheme. The Adam optimizer with constant learning rate le-4
was adopted.

During the synthesis process, the predicted output was sam-
pled from the categorical distribution, and fed back to the au-
toregressive module as historical audio input. The motivation
for using sampling is to reduce quantization error. Given a
random variable X, the value with maximum probability is re-
ferred as ez p. The random variable Y = X — 2,02 p shares
the same probability distribution with X, i.e. P{X = z;} =
P{Y = y;}. Therefore, sampling directly from X is equiva-
lent to sampling from Y and then adding to Zymqp. This pro-
cess can be seen as first selecting the probability maximum as
9-bit classification result, and then adding with the categorical
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Figure 5: The evaluated mean opinion scores.

distribution based noise, also known as dither. Dither is the
most common means of reducing the quantization error during
bit-depth transforming. The experimental results show that the
sampling scheme in the synthesis stage achieves significant im-
provement over the direct selection of the maximum probability.

3. Results

In this year, there are a total of 26 synthesized results/ground-
truth are evaluated, denoted with capital letter A to Z, of which
the natural speech is indicated with A, the baseline results pro-
posed by Merlin [26] is indicated with B, while our proposed
system is indicated with Y.

The evaluation is achieved using 3 different metrics: a) Nat-
uralness by the Mean Opinion Score (MOS); b) Similarity com-
paring to the original speaker by the Similarity Score (SIM);
c¢) Intelligibility by the Pinyin Error Rate with/without Tones
(PTER/PER). Below in each subsection, we will report the de-
tailed results.

3.1. Naturalness Test

The mean opinion score is the overall subjective score judged
by human listeners focusing on the naturalness of the speech.
The human listeners are asked to assign a score from 1 to 5 to
the sample they just listened. A score of 1 means the speech is
completely unnatural, whilst a score of 5 stands for the speech
is completely natural.

The results are given in Figure[5] Our proposed system ob-
tains an average score of 4.0 with 0.9 standard deviation. For
reference, the natural speech has a score of 4.7 with 0.63 stan-
dard deviation, and the baseline performance provided by Mer-
lin only gets a score of 2.5 with 1.14 standard deviation.

3.2. Similarity Test

The similarity score measures if the human listeners consider
the voice in a synthesized sample is similar to the voice in the
two given reference samples. The score is also distributed from

Similarity Scores Comparing to Original Speaker (All Listeners)
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Figure 6: The evaluated similarity scores comparing to original
speaker.

1 to 5, with 1 stands for the voice sounds like a totally different
person, and 5 stands for the voice sounds like exactly the same
person.

The results are shown in Figure [ Our proposed system
obtains an average score of 3.8 with 1.18 standard deviation.
For reference, the natural speech has a score of 4.5 with 0.79
standard deviation, and the baseline performance provided by
Merlin only gets a score of 1.5 with 1.03 standard deviation.

3.3. Intelligibility Test

The intelligibility is evaluated by dictation. Concretely, the hu-
man listeners are asked to write down the contents they heard
from the given samples. During the calculation of the perfor-
mance, the contents are converted to the pronunciation of these
characters, namely Pinyin. The Pinyin is an intuitive Chinese
auditory feature, can eliminate the influence of homophones
when calculation the word error rate. Moreover, the results are
post-processed to versions with and without tones, which is also
an important element of the pronunciation of the Chinese char-
acters. The gap between PTER and PER shows the tone error
rate in the correctly recognized text, representing the loss of
tone information during synthesis.

The results are shown in Figure[7]for PTER and Figure[§]for
PER. Our proposed system Y got 17.3% PTER and 15.7% PER,
slightly better than the Merlin baseline with 21.6% PTER and
20.5% PER. And the comparison of PTER and PER is shown
in Figure [} our system Y got 4.8% gap, much larger than the
2.6% gap from Merlin base line, indicates the tone reconstruc-
tion error for our system. which should be considered in the
future work.

3.4. Discussion

We review several sample speeches synthesized by our pro-
posed system and observe two types of defects that may
severely decrease the performance.

Unexpected noise: We notice that meaningless noise occurs
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Figure 7: The evaluated Pinyin error rate with tone.

occasionally, causes a significant drop in both naturalness and
intelligibility as a consequence. One possible reason is the
teacher-forcing scheme. During the training process, the his-
torical prediction errors were ignored by the teaching-force
scheme. However, during the synthesis process, any historical
prediction errors were accumulated, and affect the prediction of
the next frame. And after vocoder, these errors may cause the
unexpected noise.

The non-pronounced word: We also notice that a small
amount of words are skipped during the pronunciation. This
happens specially for the repetitive words. We conjecture that
the intervals between the repetitive words may be not well main-
tained through the acoustic model. Hence, the vocoder might
view them as one word with longer occasion rather than mul-
tiple words. More specific reasons and solutions are left for
future studies.

4. Conclusion

We described our proposed TTS system for Blizzard Challenge
2019, which consists of deep neural network based acoustic
model and vocoder. Our system performs better than the bench-
mark system, with 1.5-point higher MOS, 1.5-point higher SIM,
4.8% lower PER, and 4.3% lower PTER. We have noticed sev-
eral drawbacks of our system by carefully investigating the eval-
uation results, currently we are focusing on further improve-
ment correspondingly.
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