
Agile MaryTTS Architecture for the Blizzard Challenge 2018

Sébastien Le Maguer1–3, Ingmar Steiner1–3, Francesco Tombini1,2,
Pradipta Deb1,3, Moitree Basu1,3, Insa Kröger1–3

1Multimodal Computing and Interaction, Saarland University, Germany
2Language Science & Technology, Saarland University, Germany

3Multilingual Technologies Lab, DFKI GmbH, Saarbrücken, Germany
{slemaguer,steiner,ftombini,pradipta,moitreeb,insak}@coli.uni-saarland.de

Abstract
In this paper, we present the MaryTTS entry for the Blizzard
Challenge 2018. Our participation is motivated by the use of a
new system architecture whose development began three years
ago. To this end, we designed a fully modular pipeline which
incorporates native modules and distributed processes, includ-
ing a new grapheme to phoneme conversion (G2P) component.
The back-end also supports this modularity, as the fundamen-
tal frequency (F0) is predicted separately, based on a model of
its dynamics. A segmental synthesizer using phonetic informa-
tion and the predicted prosody is then used to produce the final
signal. Even though our results are disappointing, the partici-
pation has shown that our architecture is functional and that we
can now further develop interfaces to several open-source back-
ends. This will hopefully strengthen the role of MaryTTS as a
framework for research in speech synthesis.
Index Terms: Speech synthesis, modular architecture,
MaryTTS

1. Introduction
Over the past three years, we have been massively restructur-
ing the core of the open-source MaryTTS synthesis system [1].
We participated in the Blizzard Challenge during these years in
order to assess this ongoing development. Our unit-selection
entry in 2016 [2] aimed to adapt the stable legacy release and
to assess its quality. The 2017 entry [3] used the restructured
architecture as the front-end, which we coupled with the latest
version of HTS [4] at the time.

For this year’s Blizzard Challenge, we present the current
version of the new architecture of MaryTTS. It has allowed us
to develop a fully modular system to handle the front-end as
well as the back-end processing. We have tested the modular-
ity to an extreme, based on the use of internal modules, ded-
icated Java modules developed outside of the MaryTTS sys-
tem, as well as network-based modules. In order to integrate
these modules, we designed a custom data processing pipeline.
The goal of this pipeline is to model the different components
(e.g., the duration, fundamental frequency (F0), and segmental
parts) as independently as possible. In addition, the grapheme
to phoneme conversion (G2P) paradigm was updated. All of
this led to a parallel development which produced the different
software, data, and model artifacts needed at the synthesis stage.

The remainder of this paper is structured as follows. First,
we present the data processing scheme which produces the ar-
tifacts needed for the synthesis stage. Then, we focus on the
runtime synthesis pipeline, presenting the motivation behind it
and how we adapted it for this year’s Blizzard Challenge. Fi-
nally, we analyze and discuss the evaluation results.

2. Data processing
The entire end-to-end data processing and synthesis pipeline is
shown in Figure 1. In contrast to our previous Blizzard en-
tries, we blurred the distinction between “voicebuilding” and
subsequently running the system to synthesize the test set. In-
stead, we designed individual components in dedicated projects;
following an input-process-output pattern, each component de-
pends on data artifacts resolved from an internal binary package
repository (Figure 1j), processes them, and publishes data (or
model) artifacts for consumption by downstream components.

This encapsulation enabled fine-grained control over, and
easier debugging within, each step in the pipeline. Moreover,
it allowed us to reduce the technical overhead of provisioning
dedicated services, to build components in a distributed fashion,
and to mitigate dependency version conflicts. Stepwise refine-
ment to individual components led to publishing updated snap-
shot versions of the output artifacts, triggering updates of down-
stream components. The entire process was managed using the
Gradle1 build automation tool.

2.1. Raw data

The raw data provided by the Blizzard Challenge organizers
was processed as shown in Figure 1a. The audio, which came in
a variety of codecs and containers, was first decoded, and then,
using both the provided labeling and orthographic representa-
tion, aligned with the text, before being split into corresponding
text and audio utterances of various length.

Some of the provided audiobooks were already aligned with
the text. In addition to these, we manually added the text align-
ment for the remaining audiobooks. We extracted the text from
the provided PDF files and manually checked it, making sure
that it was in the correct order.

Furthermore, we had to roughly align the text to the cor-
responding audio. To automatize this process, we created
TextGrids using a custom Praat script [5]. The TextGrids were
then used to strip unwanted artifacts from the audio, such as the
chime sound that indicates a page turn. Some audio passages
did not fully correspond to the given text; the voice talent took
some liberties with the exact wording, but generally this was
rare. Nevertheless, in such instances the text had to be updated
manually.

2.2. Grapheme to phoneme conversion

For grapheme to phoneme conversion (G2P), the legacy
MaryTTS system used dictionaries and pronunciation rules
based on finite state transducers (FSTs) and rule-based syllab-

1https://gradle.org/



Input: raw data provided by Blizzard organizers

Process: decode compressed audio to PCM, filter provided utterance segmentation,
align text segments to audio chunks, merge manual corrections, cut audio

Output: text utterances; lossless audio

(a) Raw data processing, cf. Section 2.1.

Input: CELEX English pronunciation dictionary

Process: convert to IPA, train attention-based LSTM using TensorFlow

Output: G2P model

(b) Grapheme to phoneme conversion, cf. Section 2.2.

Input: text utterances (training and test sets); G2P model

Process: tokenization, text normalization, POS tagging, provision dedicated server and
run grapheme to phoneme conversion, serialization to MaryXML

Output: MaryXML utterances (with pronunciation; training and test sets)

(c) Utterances, cf. Section 2.3.

Input: MaryXML utterances; audio

Process: generate custom dictionary from MaryXML tokens, obtain phonetic segmenta-
tion using Montreal Forced Aligner

Output: phonetic labels aligned with audio

(d) Forced alignment, cf. Section 2.4.

Input: MaryXML utterances; phonetic labels

Process: inject start/end times, durations from phonetic labels into MaryXML phones

Output: MaryXML utterances (with phone durations)

(e) Aligned utterances, cf. Section 2.5.

Input: MaryXML utterances (with phone durations)

Process: train duration model using TensorFlow

Output: duration model

(f) Duration model training, cf. Section 2.6.

Input: MaryXML utterances (with phone durations); audio

Process: extract F0 contours using Praat, align with MaryXML syllables, encode dy-
namic parameters, add word embeddings, train F0 model using TensorFlow

Output: F0 model

(g) F0 model training, cf. Section 2.7.

Input: MaryXML utterances (with phone durations); audio

Process: extract MaryXML phones and generate context features, extract acoustic fea-
tures using PySPTK/PyWORLD, train segmental synthesizer model using TensorFlow

Output: segmental synthesizer model

(h) Segmental synthesizer training, cf. Section 2.8.

Input: MaryXML test set utterances; duration, F0, and segmental synthesizer models

Process: provision dedicated servers and predict duration, F0, and acoustic features for
each test set utterance, synthesize audio

Output: Audio for submission

(i) Segmental synthesizer training, cf. Section 3.

Raw training
set (text, audio)

Raw test set (text)

English CELEX
dictionary

G2P model

Text utterances

Audio utterances

MaryXML utterances
(training set)

MaryXML utter-
ances (test set)

Phonetic seg-
mentation

MaryXML utterances
(with durations)

Duration model

F0 model

Segmental syn-
thesizer model

Submission data

(j) Data artifacts

Figure 1: Data processing and synthesis pipeline. On the left, (a) to (i) show dedicated projects for each component, whose input data
artifacts are resolved from, and whose output data artifacts are published to, an internal binary package repository (j).



ification, leading to numerous limitations. To move beyond
this, we developed a new experimental deep neural network
(DNN) based G2P component, which predicts phonemes, sylla-
ble boundaries, and lexical stress with high precision, and uses
international phonetic alphabet (IPA) symbols and correspond-
ing phonological features.

We considered the G2P task as a probabilistic model, where
given a sequence of graphemes X = x1,x2,x3, . . . ,xp, we com-
pute the conditional probability Pr(Y |X) of a phoneme sequence
Y = y1,y2,y3, . . . ,yp given by:

Pr(Y |A,X)≈
p

∏
i=1

Pr(yi|yi−1
i− j ,x

i+ j
i− j) (1)

where A is the alignment and j denotes the history windows
which are being considered for estimation.

We used a bi-directional encoder-decoder model approach
as suggested by Sutskever et al. [6]. The basic architecture of
an encoder-decoder model is as follows:
• An encoder reads the grapheme sequence X =

x1,x2,x3, . . . ,xp as a sequence of character vectors.
• The encoder then creates an internal representation as a se-

quence of hidden state representations H = h1,h2,h3 . . . ,hp
from the embedded input characters (one-hot vector repre-
sentation).

• A decoder accepts the encoder output to generate the
sequence of phonemes one by one. For a particu-
lar time t, the decoder generates the phone yt given
(yt−1,yt−2,yt−3, . . . ,y1).

Most of the time, there is a mismatch between the lengths
of the grapheme and corresponding phoneme sequences and
the alignment is not one-to-one. Therefore, it is important to
gather contextual information from both ends of the grapheme
sequence. In order to capture the context from both ends for
each grapheme, we used a multi-layered stacked bidirectional
LSTM (BiLSTM) model for the encoder and a multi-layered
stacked unidirectional long short-term memory (LSTM) for the
decoder. For our system, we not only predict the phoneme se-
quence for a particular grapheme sequence, but also the syllab-
ification and lexical stress (primary, secondary, or none). Our
system has the following architecture:
• 3 hidden layers each with 256 units.
• mini-batch stochastic gradient descent (SGD) with an initial

learning rate of 0.001 and a batch size of 128.
• an Adam optimizer; in cases where we hit a plateau in our

loss curve, we reduced the learning rate by a factor of 0.6.
• a dropout layer on top of stacked LSTMs with a keep prob

rate of 0.8.
Our G2P model was trained on the English pronunciation

dictionary from CELEX [7], which we first converted to IPA
notation. We ran our model for 150 epochs and saved the model
state whenever we observed a drop in word error rate (WER)
and phoneme error rate (PER). To evaluate the performance, we
split the CELEX data into a 107 355-word training set, a 15 156-
word test set, and a 3790-word validation set. We tuned all the
hyper-parameters until we obtained a WER of 1.73 %, a PER of
0.29 %, a syllable error rate (SyER) of 0.67 %, and a stress error
rate (StER) of 1.06 %.

We integrated the G2P model as shown in Figure 1b, us-
ing a dedicated service to predict the pronunciation on demand.
Unlike for our previous Blizzard entry [3], we did not adapt or
customize the pronunciation prediction for the Blizzard domain.

2.3. Utterances

As shown in Figure 1c, we processed the text utterances from
both the training and test sets into a MaryXML structure, using
our G2P model in a custom component. The resulting utter-
ances were serialized to MaryXML markup for easy manipula-
tion and consumption in downstream components.

2.4. Forced alignment

To align the utterances with the audio, we ran a forced align-
ment using the Montreal Forced Aligner (MFA) [8]. The pre-
dicted phonemes were first extracted into a custom pronuncia-
tion dictionary to avoid any “unknown” tokens (cf. Figure 1d).

2.5. Aligned utterances

To provide the phoneme and pause durations to downstream
components (cf. Figure 1e), we injected the segment start and
end times from the forced alignment into the MaryXML utter-
ances.

2.6. Duration model

As shown in Figure 1f, we extracted features from the aligned
MaryXML utterances to train a duration model, developed as a
proof of concept to use DNNs directly in Java using TensorFlow
[9], as well as different features at runtime.

The input is a one-hot vector composed of a quinphone
context representation of the phonological features for each
phoneme. The output feature is the phone duration. The trained
model architecture is a feed-forward DNN (FF-DNN) of 5 lay-
ers having 512 neurons each. The model was trained using a
learning rate of 0.001, a batch size of 100, an Adam optimizer,
and the root mean square error (RMSE) as a loss function. Al-
though the maximum number of epochs was set to 50, the model
selected was the one obtained after 17 epochs, as no further im-
provement was observed.

2.7. F0 model

To model the fundamental frequency (F0), we adopted a purely
dynamic approach [10]. Specifically, the values of encoded F0
contours do not encode the absolute location of anchor points
within the frequency domain, as it is typically done in most
state-of-the-art models, but rather, the relative position of each
anchor point with respect to the previous one.

Because of the importance of syllables as prosodic units,
the syllable was chosen as the support level to undergo inter-
nal subdivision; we first assumed a default interval size (0.1 s),
adapted to get an even number of subdivisions, which was used
to determine the number and times of the anchor points for each
syllable. Using the audio and aligned utterances (cf. Figure 1g),
we first extracted the F0 contour using Praat [5]. Then the fol-
lowing recurrent formula was used to produce a dynamic repre-
sentation of the contour:

ft =
{

2(nt/s) t = 1
ft−1 ∗2(nt/s) t > 1

(2)

where t is the time index, s is the number of pitch levels within
each octave (in our case, 24), nt is the number of pitch levels
away from ft−1, and ft is the frequency of the F0 value nt pitch
levels away from ft−1. Before the first F0 value, nt=1 is set to 0
after the recursion is complete.

The information encoded by nt was further decomposed
into the sign of nt (viz. −1, 0 and 1 for falling, level, and ris-



ing, respectively), and the magnitude of change. The magni-
tude representation was further compressed by rounding the val-
ues to their closest triangular number approximation to capture
larger intervals with linearly decreasing precision (11 discrete
values were sufficient to encode the F0 for the entire corpus).
Encoding the values in this way allowed us to reformulate the
F0 prediction as a classification, rather than a regression, task.
In addition to the categorical sign and magnitude features, we
also extracted a number of text-based features, including POS
tags, word boundaries, surrounding punctuation, and word em-
beddings.

Next, the textual features, as well as the corresponding sign
and magnitude features, were used to train a DNN model. The
objective of the model is to predict the sign and magnitude fea-
tures from the textual input features. The adopted DNN archi-
tecture is shown in Figure 2. In this architecture, we distinguish
three stages: word embedding, linguistic interaction, and pre-
diction.

The objective of the word embedding stage is to project the
lemma information into a dedicated reduced space. This fol-
lows a standard approach in natural language processing (NLP)
[11], and this layer is a typical feed-forward DNN (FF-DNN)
composed of three layers of 1024, 512 and 256 neurons.

The second stage consists of modeling linguistic interac-
tions. The first layer of this stage is a feed-forward (FF) layer
of 256 neurons. Then, we use a bidirectional RNN (BD-RNN)
of 512 gated recurrent unit (GRU) neurons each, to capture the
contextual interaction.

The last stage uses the output of the second stage to pre-
dict the sign and magnitude of the F0 encoding. This stage is
composed of two layers, a simple FF layer of 512 neurons and
a forward recurrent layer of 512 GRU neurons, to take the con-
text into account. At prediction time, in order to align the sign
and the magnitude, the magnitude recurrent layer depends on
the prediction of the sign. This is not the case during the back
propagation step, where we stop the gradients from flowing into
the sign compoment. This is done to prevent the sign layers
from trying to predict the magnitude.

In order to reduce overfitting, we used dropout [12], and to
increase robustness against various utterance lengths, we aug-
mented the data by grouping contiguous utterances into buckets
of various sizes.

The trained model produces sequences of sign and associ-
ated magnitude values, from which static F0 can be decoded by
multiplying the signs and the magnitudes to recover the dynam-
ics. We then recursively apply the dynamics to an initial seed
value set to 0, to produce a sequence of static coefficients.As
the frequency mapping scale does not contain any negative val-
ues, we then shift the static coefficients up, so that the lowest
value is at 0. Next, we produce an initial F0 sequence by re-
placing each static coefficient by its corresponding frequency in
Hz and shifting it to the speaker’s F0 range, using the following
translation:

f ∗t = ft −
1
k

k

∑
t=1

ft + f (s) (3)

where t corresponds to the time index, f (s) to the average F0 of
speaker s, ft to the F0 value at time t, and f ∗t to the F0 value at
time t adapted to speaker s. Finally, the sequence of F0 values
is converted into a continuous contour by means of quadratic
interpolation.

Word
embedding

word feat.

Ling. interaction

non word feat.

Sign pred. Mag. pred.

prev. signprev. mag

sign magnitude

∆F0

Figure 2: DNN pipeline. The dependencies on the previous
states are represented by dashed arrows, and the forward de-
pendencies, by plain arrows. The blue box corresponds to an
FF-DNN, the red box, to a network composed by a FF layer
and a bidirectional recurrent layer, and the green boxes, to a
network composed of an FF layer and a forward recurrent layer.

2.8. Segmental synthesizer

With both duration and F0 modeled using dedicated DNNs, we
implemented a segmental synthesizer to predict the remaining
acoustic features required by the WORLD vocoder [13] for au-
dio rendering.

As usual, input and output frames were generated at 5 ms
intervals. Each input feature vector of the segmental synthesizer
consists of the quinphone label, phone duration, the percentage
position of the frame within the phone, and the log F0, extracted
from the audio and aligned utterances (cf. Figure 1h). This leads
to a vector of size 228, with all input vectors normalized to a
standard normal distribution.

The output vector comprises the mel-generalized cepstrum
(MGC) and band aperiodicity parameter (BAP) coefficients
and the voicing property, extracted using Python wrappers for
WORLD and SPTK2. This yields a vector of size 68, which is
also normalized to a standard normal distribution.

Finally, the synthesizer relies on a DNN model. The neu-
ral network performing the synthesis comprises a sequence of
10 self-normalizing FF layers [14], followed by one final RNN
layer just before the output. Each layer is composed of 512
nodes and the recurrent one uses GRU neurons. The static co-
efficients represent the final output of the segmental synthe-
sizer. This model was trained using the same training corpus
as the F0 model. The mel-cepstral distortion (MCD) of analy-
sis/resynthesis using this model is around 7 dB.

3. Synthesis
The core idea of the new MaryTTS architecture is to have a
fully modular runtime system. This implies that each module
can be replaced by another, as available, without restarting the

2http://sp-tk.sourceforge.net/

http://sp-tk.sourceforge.net/


Tokenization

Text normalization

POS tagging

Prosody tagging

G2P G2P server

Feature generation

Duration prediction

F0 prediction F0 server

Segmental synthesis Segmental synthesizer

Input text

Speech

M
ar

yT
T

S

Figure 3: MaryTTS runtime synthesis pipeline. The boxes indi-
cate native Java modules (red), and client modules (green) com-
municating with dedicated servers (blue). The communication
is implemented by serializing the data to be sent and loading the
results in the internal MaryTTS utterance representation. The
corresponding configuration is presented in Listing 1.

system. It also implies that we have full control over the mod-
ule by defining its parameters and which models are loaded.
To present these details, we first describe a standard runtime
pipeline, and its constraints and advantages. Then, we focus on
the application of this pipeline to render the Blizzard samples.

3.1. Runtime pipeline

MaryTTS relies on a client/server architecture. The client sends
a process request, and the server processes it and returns the re-
sult to the client. Therefore, the server is assumed to be running
with all available modules already configured. This is achieved
when the server starts, as it inspects the classpath to discover
which modules are available.

At the runtime stage, a request sent by a client should con-
tain two pieces of information: the data to process and a con-
figuration. The configuration describes how the data should be
loaded, how the results should be rendered, the sequence of pro-
cessing modules, and the parameters for each module. As the
configuration process is based on Java reflection, we are able to
fully control the synthesis process and easily extend it by adding
the proper setters. The entire pipeline was designed to have a
flexible framework which allows prototyping by extending and
accessing the process as easily as possible.

3.2. Application for the Blizzard Challenge

As stated above, the goal of our participation is to assess that
the synthesis process is valid and can be as modular as de-
sired. To this end, in addition to the synthesis of the submission
data shown in Figure 1i, we also applied the runtime synthesis
pipeline shown in Figure 3.

We distinguish two kinds of modules, native Java modules
and client modules. The client modules are used for G2P and
F0 prediction, as well as segmental synthesis. Each of these re-
quires a dedicated server; in our case, we provisioned Docker
containers3 for G2P and F0 prediction, in order to satisfy spe-

3https://www.docker.com/

{
"marytts.runutils.Request": {
"logger_level": "INFO",
"input_serializer": "marytts.io.serializer.TextSerializer",
"output_serializer": "marytts.io.serializer.TextGridAudioSerializer",
"module_sequence": [
"marytts.language.en.JTokenizer",
"marytts.language.en.Preprocess",
"marytts.language.en.OpenNLPPosTagger",
"marytts.modules.nlp.ProsodyGeneric",
"marytts.g2pdnn.G2PDNNModule",
"marytts.modules.acoustic.TargetFeatureLister",
"marytts.modules.BlizzardDNNDurationPrediction",
"marytts.modules.IntonationPrediction",
"marytts.modules.SegmentalSynthesizer"

]
},
"marytts.modules.BlizzardDNNDurationPrediction": {
"predictor_model": "duration/",
"normaliser": "QuinphoneNormaliser"

},
"marytts.modules.IntonationPrediction": {
"hostname": "localhost",
"port": 8850

},
"marytts.modules.SegmentalSynthesizer": {
"hostname": "localhost",
"port": 8895

}
}

Listing 1: MaryTTS configuration used for runtime synthesis.

cific CUDA and TensorFlow version requirements and host sys-
tem configuration compatibility. The reason for this technical
overhead is the fact that, at this experimental stage, these mod-
ules were developed separately in the context of different stu-
dent projects. The data used for these modules comes, respec-
tively, from the results of Section 2.2 for the G2P module, the
results of Section 2.7 for the F0 prediction modules, the results
of Section 2.8 for the segmental synthesizer.

The remainder of the MaryTTS modules are Java modules.
This includes the duration prediction module whose models, de-
scribed in Section 2.6, are directly loaded for inference in Java.
This heterogeneity among the module types demonstrates that
MaryTTS can be used for prototyping, which is the main goal
of this new framework architecture.

The configuration used for the synthesis is shown in List-
ing 1. As mentioned in Section 2, in order to have more pre-
cise control over the output, and to avoid rerunning the entire
pipeline if a problem was detected, we split the process in three
main places: after the grapheme to phoneme conversion, after
the duration prediction, and after the F0 prediction. We tested
the validity of this multi-step approach by manually compar-
ing the output of the entire process achieved in the step-wise
paradigm to that of the “one shot” paradigm, and verified that
the results were equivalent. This possibility demonstrates the
flexibility and modularity of the system, as well as its debug-
ging capabilities.

4. Results
The results achieved by our system in the Blizzard Challenge
evaluation are presented in Figure 4 for naturalness, speaker
similarity, and intelligibility. The natural reference “system” is
identified by the letter A. The benchmark systems are identified
by B for unit-selection, C for hidden Markov model (HMM), D
for the DNN, and E for the DNN with trajectory training. Our
system is identified by the letter H.

Considering our approach, our hope (aside from testing the
new architecture paradigm) was to achieve intelligibility and
similarity at the level of the benchmark DNN and improve the
naturalness compared to this system. However, the results show
that we fell short of this objective, which could be explained
by multiple factors. First, the duration model is trained with-
out any knowledge of prosodic information (pause, stress, etc.).

https://www.docker.com/


0

1

2

3

4

5

A B C D E F G H I J K L M N O

System

M
ea

n
op

in
io

n
sc

or
e

Rating naturalness similarity

0

20

40

B C D E F G H I J K L M N O

System

W
or

d
er

ro
rr

at
e

(%
)

Figure 4: MOS for naturalness and speaker similarity and WER
for intelligibility for all systems across all listeners.

In addition, it doesn’t predict any sub-phone duration, and is
therefore too naı̈ve to be realistic.

The second part concerns the segmental synthesizer. The
model directly outputs the acoustic coefficients, without any dy-
namic information. We assumed that this dynamic could have
been captured by the LSTM layer preceding the output layer
of the segmental synthesizer network, but we will need to fine-
tune the network architecture and hyper-parameters to improve
the quality of the output audio.

Finally, notwithstanding the “agile” nature of our synthe-
sis pipeline, the biggest issue turned out to be training time.
Unlike during the preparation of last year’s Blizzard participa-
tion, this year we had access to a dedicated graphics processing
unit (GPU), but training the various models using TensorFlow
still took several days. Shortly before the submission deadline,
we caught a bug in our data cleaning process (cf. Section 2.1)
that resulted in text and audio misalignments, which propagated
to the forced alignment, and from there further into the down-
stream components. Although the bug was then fixed, we did
not have enough time to rerun the full pipeline before the dead-
line. We suspect that this may have further negatively affected
the quality of our synthesis output.

5. Conclusion
As we have seen in this paper, the MaryTTS system has reached
a stage where it can be used to achieve speech synthesis using a
variety of state-of-the-art techniques. However, even though the
modularity is working as expected, the output quality achieved
is not yet optimal. The next stage is to complete development of
back-end support by adding compatibility with current state-of-
the-art, open-source systems such as HTS [4] and Merlin [15].
To do so, we will extend the data processing pipeline to be com-
patible with these systems and also to distribute, in a compatible
way, models produced by these systems.

Finally, we will also extend the process to integrate base-
line objective evaluations which should achieved at the training
stage.

6. Acknowledgments
This work was funded by the German Research Foundation
(DFG) under grants EXC 284 and SFB 1102. We used a Quadro
P5000 GPU donated by the NVIDIA Corporation.

7. References
[1] I. Steiner and S. Le Maguer, “Creating new language and voice

components for the updated MaryTTS text-to-speech synthesis
platform,” in 11th Language Resources and Evaluation Confer-
ence (LREC), Miyazaki, Japan, 2018, pp. 3171–3175. URL: http:
//www.lrec-conf.org/proceedings/lrec2018/pdf/1045.pdf

[2] S. Le Maguer and I. Steiner, “The MaryTTS entry for
the Blizzard Challenge 2016,” in Blizzard Challenge, Cuper-
tino, CA, USA, 2016. URL: http://festvox.org/blizzard/bc2016/
MARYTTS Blizzard2016.pdf

[3] ——, “The “uprooted” MaryTTS entry for the Blizzard Challenge
2017,” in Blizzard Challenge, Stockholm, Sweden, 2017. URL:
http://festvox.org/blizzard/bc2017/MaryTTS Blizzard2017.pdf

[4] H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. W.
Black, and K. Tokuda, “The HMM-based speech synthesis sys-
tem (HTS) version 2.0,” in 6th ISCA Speech Synthesis Work-
shop (SSW), Bonn, Germany, 2007, pp. 294–299. URL: https:
//www.isca-speech.org/archive open/ssw6/ssw6 294.html

[5] P. Boersma, “Praat, a system for doing phonetics by computer,”
Glot International, vol. 5, no. 9/10, pp. 341–345, 2001.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Advances
in Neural Information Processing Systems 27 (NIPS),
2014, pp. 3104–3112. URL: http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf

[7] R. H. Baayen, R. Piepenbrock, and L. Gulikers, “The CELEX
lexical database (CD-ROM),” 1995, version 2.5.

[8] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal Forced Aligner: trainable text-speech align-
ment using Kaldi,” in Interspeech, Stockholm, Sweden, 2017, pp.
498–502, doi:10.21437/Interspeech.2017-1386.

[9] M. Abadi et al., “TensorFlow: A system for large-scalemachine
learning,” in 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), Savannah, GA, USA, 2016, pp.
265–283. URL: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf

[10] F. Tombini, “A dynamic deep learning approach for intonation
modeling,” Master’s thesis, Saarland University, Saarbrücken,
Germany, 2018, doi:10.22028/D291-27237.

[11] O. Levy and Y. Goldberg, “Neural word embedding as
implicit matrix factorization,” in Advances in Neural In-
formation Processing Systems 27 (NIPS), Montreal, QC,
Canada, 2014, pp. 2177–2185. URL: https://papers.nips.cc/paper/
5477-neural-word-embedding-as-implicit-matrix-factorization

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
vol. 15, pp. 1929–1958, 2014. URL: http://jmlr.org/papers/v15/
srivastava14a.html

[13] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: a
vocoder-based high-quality speech synthesis system for
real-time applications,” IEICE Transactions on Informa-
tion and Systems, vol. 99-D, no. 7, pp. 1877–1884, 2016,
doi:10.1587/transinf.2015EDP7457.

[14] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter,
“Self-normalizing neural networks,” in Advances in Neural In-
formation Processing Systems 30 (NIPS), Long Beach, CA,
USA, 2017, pp. 972–981. URL: https://papers.nips.cc/paper/
6698-self-normalizing-neural-networks

[15] Z. Wu, O. Watts, and S. King, “Merlin: An open source neural
network speech synthesis system,” in 9th ISCA Speech Synthe-
sis Workshop (SSW), Sunnyvale, CA, USA, 2016, pp. 202–207,
doi:10.21437/SSW.2016-33.

http://www.lrec-conf.org/proceedings/lrec2018/pdf/1045.pdf
http://www.lrec-conf.org/proceedings/lrec2018/pdf/1045.pdf
http://festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf
http://festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf
http://festvox.org/blizzard/bc2017/MaryTTS_Blizzard2017.pdf
https://www.isca-speech.org/archive_open/ssw6/ssw6_294.html
https://www.isca-speech.org/archive_open/ssw6/ssw6_294.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://dx.doi.org/10.21437/Interspeech.2017-1386
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://dx.doi.org/10.22028/D291-27237
https://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization
https://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://dx.doi.org/10.1587/transinf.2015EDP7457
https://papers.nips.cc/paper/6698-self-normalizing-neural-networks
https://papers.nips.cc/paper/6698-self-normalizing-neural-networks
http://dx.doi.org/10.21437/SSW.2016-33

	 Introduction
	 Data processing
	 Raw data
	 grapheme to phoneme conversion
	 Utterances
	 Forced alignment
	 Aligned utterances
	 Duration model
	 F0 model
	 Segmental synthesizer

	 Synthesis
	 Runtime pipeline
	 Application for the Blizzard Challenge

	 Results
	 Conclusion
	 Acknowledgments
	 References

