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Abstract
This paper presents a speech synthesis system developed at
the University of Tokyo (UTokyo) for the Blizzard Challenge
2017. The task of this year’s challenge is the British English
children’s audiobook. We have developed the Deep Neural
Network (DNN)-based speech synthesis system including two
functions: automated bell-sound removal and an audio code.
The developed system has been submitted, and the results of the
large-scale subjective evaluation demonstrated the performance
of our system.
Index Terms: deep neural network, DNN-based speech synthe-
sis, audiobook, audio code

1. Introduction
To compare different speech synthesis techniques to develop
a corpus-based speech synthesis system using shared datasets,
Blizzard Challenge was devised in January 2005 [1] and has
been held every year. This year’s Blizzard Challenge has two
kinds of tasks: 1) the single hub task (2017-EH1) which re-
quires teams to build an end-to-end text-to-speech system and 2)
two spoke tasks (2017-ES1 and 2017-ES2) which are designed
to be accessible to the wider machine learning community. We
joined only the first task (2017-EH1).

We are the joint team of System #1 Lab. and Minematsu
& Saito Lab. of the University of Tokyo. Our research aimed
various target towards augmented speech-based communication
[2, 3, 4, 5]. To submit a speech synthesis system from our team
to the Blizzard Challenge 2017, we have developed our system
called the UTokyo speech synthesis system. The acoustic mod-
els are Deep Neural Networks (DNNs), and we newly imple-
mented some modules, such as an audio context and automatic
bell-sound removal. The developed system has been submitted,
and the results of the large-scale subjective evaluation demon-
strated the performance of our system.

2. Data and task
The task of this year’s Blizzard Challenge is to produce a set of
voices given British English audiobook corpora. The database
has approximately 6.5 hours’ speech data. However, to shorten
the voice building time, we used the training data used in the
last year’s challenge [6]. These speech data are recorded by one
female speaker. The sampling rate is 44.1 kHz. In this database,
there are three types of audio formats, that are MP3, WMA, and
M4A. A sentence-level alignment label between text and speech
is provided. Many utterances in those audiobooks are very
rich in emotion with a large number of onomatopoetic words.
They also include non-speech sounds such as a bell sound. The
testing transcriptions include texts collected from audiobooks,
news and Semantically Unpredictable Sentences (SUS). There-
fore, different sets of audio are required to be synthesized.
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Figure 1: Overview of the UTokyo speech synthesis system. We
train three kinds of models: 1) acoustic models and phoneme
duration models, 2) Modulation Spectrum (MS) models, and
3) pause duration models consisting of inter-sentence, inter-
paragraph, and inter-chapter duration models. “sent*” is the
sentence ID. ML indicates Maximum Likelihood.

3. UTokyo speech synthesis system
Our system mainly consists of 4 modules: speech processing,
text processing, training, and speech synthesis modules. The
overview is shown in Fig. 1.

3.1. Speech processing module

This module performs audio data preprocessing and speech pa-
rameter extraction. First, audio formats (MP3, WMA and M4A)
of the training data was converted to the RIFF WAV format, us-
ing the sox command that is a command-line audio processing
tool for Linux. In the audio data, bell sounds are included at
the timing of the page turning. Since the sound is expected to
be completely the same as all the time, we expect that it can
be removed by a simple approach such as spectral matching.
One of bell sounds was initially extracted as the example, and
then, using the spectral matching, the bell sounds of the au-
dio data were detected and removed automatically. Finally, we
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Figure 2: An example of log-scaled power spectra. Each line
is the spectrum averaged in each audiobook story. The audio
format used in this year’s challenge changes the spectra at the
higher frequency bands.
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Figure 3: Histogram of inter-sentence duration. The Gaussian
distribution is used to model this histogram.

performed power normalization and noise flooring to the audio
data.

After preprocessing, speech parameters are extracted from
the audio data, using the WORLD analysis-synthesis system
[7, 8]. The speech parameters were 0th-through-59th mel-
cepstral coefficients, 4-band band aperiodicity, continuous log-
scaled F0, and unvoiced/voiced labels. The shift length was 5
ms. Speech parameter trajectory smoothing [9] was performed
to improve the training accuracy, using low-pass filters with 50
Hz (mel-cepstral coefficients) and 10 Hz cutoff modulation fre-
quency. The trajectory smoothing removes the detailed struc-
tures of speech parameters that are negligible for speech per-
ception.

3.2. Text processing module

This module extracts linguistic features and makes a contex-
tual vector for conditioning acoustic models. 387-dimensional
sentence-level linguistic features, which are often used for
reading-style speech synthesis, were extracted using Flite [10].
We added 3-dimensional binary style contexts (0: reading, 1:
speaking, 2:mixed). The style context is determined by whether

or not the sentence is enclosed by apostrophes. Sentiment anal-
ysis was not used. The position contexts, such as the position
of the current sentence in the current paragraph, were also used.
As an audio context, we used the 3-dimensional binary audio
code. As shown in Fig. 2, the format of the original audio data
changes spectral parameters, especially at the higher frequency
components. The audio code (0: M4A, 1: MP3, 2: WMA)
supports such a global change of the speech parameters.

3.3. Training module

This module trains statistical models to predict speech param-
eters from the input transcription. We built three kinds of the
statistical models: acoustic models, Modulation Spectrum (MS)
models, and pause duration models.

3.3.1. Acoustic models and phoneme duration modules

We built the standard DNN-based speech synthesis [11] using
speech segments. The DNN architectures of the acoustic mod-
els were Feed-Forward neural networks that include 3 512-unit
Rectified Linear Unit (ReLU) hidden layers [12] and a 196-
unit linear output layer. Architectures of the phoneme duration
model were the same, but the number of units of the output
layer was 1. The linguistic features included features described
in Sec. 3.2 and 3-dimensional phoneme duration contexts. The
speech features included static, delta, and delta-delta of speech
parameters. The contextual features and speech features were
normalized to have zero-mean unit-variance, and 95% of the si-
lence frames were removed from the training data. 2400 utter-
ances were used for initial training, and 1900 utterances having
higher training accuracy were selected for retraining the acous-
tic models.

3.3.2. Modulation Spectrum (MS) models

To enhance generated speech parameters, we trained MS mod-
els using non-silence segments. The zero-mean segment-level
MSs were calculated, and the distribution was modeled with
the context-independent Gaussian distribution. Similarly, a dis-
tribution of the MSs of synthetic speech is also modeled in the
same manner.

3.3.3. Pause duration models

To predict pause duration between sentences, paragraphs, and
chapters, we trained three kinds of pause duration models: inter-
sentence, inter-paragraph, inter-chapter duration models. Using
text-audio alignments, the pause duration was extracted. The
distribution was modeled with the context-independent model.
Since the distribution seems to be unimodal and symmetric as
shown in Fig. 3, we utilized the Gaussian distribution to fit it.

3.4. Synthesis module

Speech parameters were generated sentence by sentence, and
the waveform was synthesized. Then, the inter-sentence, inter-
paragraph, and inter-chapter duration were generated. Finally,
they were simply concatenated to synthesize a waveform of an
audiobook.

3.4.1. Speech parameter generation and post-processing

1-dimensional phone duration was predicted at each phoneme
and was encoded to the 3-dimensional duration contexts. The
speech features were predicted using the duration contexts.
Maximum Likelihood (ML)-based generation algorithm [13]



was performed to generate mel-cepstrum, continuous log-scaled
F0, unvoiced/voiced labels, and band-aperiodicity from the pre-
dicted features. MS-based post-filtering [14] setting the em-
phasis coefficient to 0.85 was performed to the generated mel-
cepstral coefficients and continuous log-scaled F0. Since the
post-filtering causes some over-emphasis, we finally applied the
trajectory smoothing to the post-filtered speech parameters. The
WORLD synthesis system was used to synthesize the sentence-
level speech waveforms.

3.4.2. Pause duration generation

The pause duration is determined using the pause duration mod-
els. The inter-sentence and inter-paragraph duration were ran-
domly sampled from their Gaussian distribution trained in ad-
vance. The ML estimate was used for determining inter-chapter
duration from its Gaussian distribution. The final speech was
simply synthesized by concatenating sentence-level speech de-
scribed in Section 3.4.1 and pause duration described here.

4. Experimental evaluation
4.1. Experimental settings

Our designated system identification letter is ’N.’ System A is
natural speech. System B is the Festival benchmark system
based on unit-selection. System C is the HTS benchmark. Sys-
tem D is a DNN benchmark using Merlin toolkit. Others are
participants’ systems. The subjects who are involved in the lis-
tening test are paid listeners, speech experts, and online vol-
unteers. This year, there are mainly four sections to evaluate,
which are a paragraph test, a naturalness test, a similarity test,
and a SUS (Semantically Unpredictable Sentences) test. For the
paragraph test, there are seven kinds of tests to evaluate differ-
ent aspects of synthesized paragraphs, namely overall impres-
sion, pleasantness, speech pauses, stress, intonation, emotion,
and listening effort.

4.2. Results and analysis

Because of the limited space, we show only 1) mean opinion
scores on overall impression of audiobook paragraphs in Fig. 4,
2) naturalness in Fig. 5, 3) speaker similarity in Fig. 6, and 4)
word error rates using SUS sentences in Fig. 7.

Totally, our results were not good. Here, we discuss the de-
fects. The two main defects are poor performance of text-audio
alignment and poor contexts. In this challenge, we used our
tool for the alignment, but it is not totally accurate. Therefore,
the phonetic property was significantly lost even in the closed
data. Also, because we did not use sentiment analysis and other
related techniques to distinguish reading style and emotional
style, the prosody of the synthetic speech became unnatural.

5. Conclusion
We introduced the UTokyo speech synthesis system for Blizzard
Challenge 2017. The results of the listening test for our system
were not good, but we have found many interesting problems
that we should have attacked.
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Figure 4: Mean opinion scores (overall impression of audio-
book paragraphs). Results by all listeners were included.
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Figure 5: Mean opinion scores (naturalness of synthetic
speech). Results by all listeners were included.
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Figure 6: Mean opinion scores (similarity of synthetic speech to
original speaker). Results by all listeners were included.
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Figure 7: Word error rates using semantically unpredictable
sentences. Results by all listeners were included.
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