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Abstract

This paper introduces the details of the speech synthesis system
developed by the USTC team for Blizzard Challenge 2017. A
6.5-hour corpus of highly expressive children’s audiobook was
released to the participants this year. A parametric system that
modeling speech waveforms was built for the task. Firstly, long
short term memory (LSTM)-based recurrent neural networks
(RNN) were adopted for the baseline system, including tone
and breaking indices (ToBI) prediction, duration modeling and
acoustic modeling. Then, we proposed a generative adver-
sarial network (GAN) based post-filtering to relieve the over-
smoothing in acoustic modeling and compensate for the differ-
ences between natural and synthetic spectrum in the baseline
system. At last, a WaveNet based neural vocoder was utilized to
model speech waveforms from acoustic feature instead of mel-
cepstrum vocoder. The evaluation results show the effectiveness
of the submitted system.

Index Terms: statistical parametric speech synthesis, LSTM-
RNN, GAN, WaveNet

1. Introduction

The USTC team have been submitting entries to Blizzard
Challenge speech synthesis evaluation for twelve years since
2006. In the first participation, we submitted an improved hid-
den Markov model (HMM)-based statistical parametric speech
synthesis (SPSS) system using line spectral pairs (LSP) [1]. In
the next two years, in order to exploit the advantage of the large
scale of the released corpus and achieve better performance,
an HMM guided unit selection and waveform concatenation
system was submitted and achieved promising performance
[2] [3]. In the challenge of 2009, we adopted the minimum
generation error (MGE) criterion in decision tree clustering
and used a cross validation method to automatically control
the scale of the decision tree [4]. In 2010, as the size of
released corpus is growing, a globally covariance tying strategy
was utilized to reduce the footprint of the model, as well as
improving the modeling training efficiency [5]. In addition, a
syllable-level FO model was further introduced to consider the
long term prosody correlations between unit candidates to be
concatenated. In the Blizzard Challenge 2011, we proposed
an improved unit selection criterion, maximum log likelihood
ration (LLR) criterion, to improve the performance of unit
selection [6]. In 2012, a set of audiobook corpus with differ-
ent recording channels were released. We utilized a channel
equalization method to compensate these channel differences
[7]1. A large corpus with hundreds of hours of unaligned
audiobooks were released in Blizzard Challenge 2013. The
scale of the corpus was a challenge to both the computational
efficiency and robustness of the submitted system. A phone
dependent model clustering method was utilized to enable

parallel training of HMMs on such a large corpus. We also
proposed an weight optimization method to automatically tune
the weights of each component in the costs of our unit selection
criterion [8]. In Blizzard Challenge 2013, 2014 and 2015,
corpus of many Indian languages were released to non-native
participants. We adopted letter-to-sound (L2S) [9] method
to build frontend text processing for Hindi, and used simple
character based front-end for other Indian languages [8]. We
also adopted deep neural network (DNN)-based data driven
spectral post-filtering techniques [10] and modulation spectrum
[11] based ones to improve the quality of synthetic speech
[12]. A non-uniform units were used for unit selection and
concatenation in our system to improve the stability of our
system for Blizzard Challenge 2015 [13]. Last year, a 5-hour
highly expressive children’s audiobook corpus was released for
system construction. In our submitted system, an long short
term memory (LSTM)-based recurrent neural networks (RNN)
were adopted for tone and breaking indices (ToBI) prediction
to achieve high expressiveness. And another LSTM-RNN was
adopted to extract distributional representation of contextual
features, which is used to evaluate contextual similarities be-
tween candidate and target units at the unit selection time [14].
This year, about 6.5 hours of British English speech data from a
single female talker was released, which comprises speech data
already released for the 2016 challenge.

Unit selection systems always achieve excellent perfor-
mance in the Blizzard Challenge every year. Due to the
over-smoothing in acoustic modeling and the restriction of
vocoder, SPSS system performs not good enough in voice
quality and similarity [15]. However, SPSS is still a hot
research topic in academia and widely used in industry be-
cause of its flexibility and small footprint. As reported in
recent literature, deep learning techniques have been applied
successfully to SPSS [16]. LSTM-RNN has achieved great
performance in both the front-end text processing [17] and
back-end acoustic modeling [18]. Moreover, a generative
adversarial network (GAN) based post-filtering was proposed
to compensate for the differences between natural speech and
synthetic speech in SPSS [19]. The performance of these
methods is still constrained by the framework of two step
(feature extraction and acoustic modeling) optimization and
phase information is lost by a mel-cepstrum vocoder. There-
fore, some researchers tried to model speech waveforms using
neural networks. Tokuda et al. [20] [21] attempted to model
raw speech waveforms using the neural network-based SPSS
framework with a specially designed output layer. Oord et al.
[22] proposed WaveNet, a deep convolutional neural network
for generating raw audio waveforms. The model is fully
probabilistic and autoregressive, with the predictive distribution
for each audio sample conditioned on all previous ones. Mehri
et al. [23] proposed SampleRNN for unconditional audio
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Figure 1: The flowchart of USTC parametric system.

generation based on generating one audio sample at a time.
The model combines autoregressive multilayer perceptrons and
stateful RNN in a hierarchical structure and models extremely
long-term dependencies in audio signals. SampleRNN and
WaveNet are also adopted as neural vocoder that generates
raw waveform samples from intermediate representations [24]
[25]. There are also some research results in end-to-end speech
synthesis, including Char2Wav [24] and Tacotron [26], which
synthesis speech directly from characters based on sequence-
to-sequence [27] with attention paradigm [28].

In order to further advance the state of SPSS, we built a
parametric system from the following 3 points: (1) LSTM-
RNN based expressive ToBI prediction, duration and acoustic
model for baseline system, (2) GAN based post-filtering to re-
lieve over-smoothing in acoustic modeling, (3) WaveNet based
neural vocoder to generate raw waveform samples from inter-
mediate acoustic features. Internal experiments and evaluation
results showed the effectiveness of the proposed system.

2. Framework

In this section, we will briefly introduce the framework of our
proposed parametric system. As indicated in Figure 1, our
SPSS system consists of two parts, the training phase and the
synthesis phase.

2.1. Training phase

At the training phase, ToBI annotations were performed manu-
ally in advance. These annotations were used for LSTM-RNN
based ToBI prediction models training to enable personalized
ToBI tags. Expressive labels, such as dialogue tags and sentence
types were used in our contextual information. Frame-level
acoustic features were extracted, including mel-cepstrum, FOs
and voice/unvoiced (U/V) information. An HMM alignment
was conducted to obtain 5 states and phoneme boundaries.
Then, we applied LSTM-RNN models to duration and acoustic
modeling.

To relieve over-smoothing in acoustic modeling, we utilized
a GAN based post-filtering composed of a generator and a
discriminator. The learned post-filtering was trained with syn-
thesized mel-cepstrum as condition and enabled the generator to
generate natural spectral texture. Then a WaveNet based neural
vocoder was trained to learn the predictive distribution for each
audio sample conditioned on all previous ones.

2.2. Synthesis phase

There are three major steps in synthesis stage. In the baseline
system, expressive linguistic features were extracted from input
text via text analysis, then fed into duration prediction and
parameter generation module. The synthesized acoustic feature
worked as conditional parameter in GAN based post-filtering.
WaveNet based neural vocoder took the post-processed acoustic
feature as condition and generated speech waveforms sample by
sample.

3. System Building
3.1. ToBI prediction

ToBI tags are important for prosody modeling of standard En-
glish, especially for a expressive speech corpus. After all ToBI
information were annotated, three LSTM-RNNs were trained
separately for accent prediction, phrase boundary prediction
and boundary tone prediction. We have built these ToBI models
using a large corpus last year, so the new personalized ToBI
models were trained using last year’s model as initial model.

A set of linguistic features were extracted for prediction.
The input feature for accent prediction included word fea-
ture, part-of-speech (POS) tag, position of current word in the
sentence, number of phonemes in current word, number of
stresses in current word, word frequency and word case style.
We adopted a binary classification layer with cross-entropy
criteria to predict the probability of the current word being
accented. The input features for phrase boundary are the same
as the ones for accent prediction except the absolute position
of current word in sentence. The probability of three classes
were predicted: beginning, intermediate and end of a phrase
boundary. All the input features for accent predicting are used
in the input feature for boundary tone prediction, except an
additional feature that indicates whether the current word is the
end of a phrase or sentence. All words are categorized with
6-class, including the beginning, intermediate, end of a phrase
with L-L tone and beginning, intermediate, end of a phrase with
L-H tone.

3.2. Duration modeling

Speech sound duration is an important component in the
prosody of synthetic speech, especially in generating expressive
and conversational speech for audiobooks. Expressive linguistic
features including abundant ToBI annotations and dialogue
and sentence types were used to improve duration prediction.
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Figure 2: The structure of the LSTM-RNN for acoustic
modeling.

40 dimensions mel-cepstrum, FO and respective delta features
were extracted from 16 kHz speech data. An HMM based
alignment was performed to generate 5 states and phoneme
boundaries. In duration modeling, we applied bidirectional
LSTM-RNN with a 6-dimensions linear output layer to predict
5 states and phoneme durations. The input and output features
were normalized separately and the model was trained with
mean square error (MSE) criteria.

3.3. Acoustic modeling

The major factor that degrades the naturalness of the synthetic
speech from SPSS is the accuracy of acoustic modeling. In the
conventional HMM-based acoustic modeling, the Gaussian dis-
tributions are estimated by averaging all observations associated
with a given decision tree leaf node. Although this averaging
process improves the robustness of parameter estimation and
generation, the detailed characteristics of the speech parameters
are often lost. Therefore, the reconstructed spectral envelopes
are typically over-smoothed, which leads to the muffled voice
quality of the synthetic speech. LSTM-RNN, which is designed
to model temporal sequences and their long-term dependencies,
has been successfully applied to acoustic modeling for SPSS
and has shown the potential to produce more natural synthetic
speech. As our baseline system, we adopted a bidirectional
LSTM-RNN, which can access input features at both past and
future frames.

Speech with higher frequency always sounds more pleas-
ant. However, in the WaveNet based neural vocoder, it usually
takes a week to train and higher frequency needs longer training
time. Moreover, a robust and effective neural vocoder requires
more training data. As the amount of training data is limited,
to balance the quality of synthetic speech and training time,
we adopted 128 dimensions mel-cepstrum extracted from 22k
speech wav using STRAIGHT, with 1-dim energy, 1-dim FO,
1-dim U/V decision and 5-dim aperiodicity ratio. Since the
corpus for the challenge this year is highly expressive, the
conventional context feature including quinphone and ToBI
information, is insufficient for prosody modeling. To enrich the
context feature, we added the dialogue embedding and sentence
type into the input of the LSTM-RNN. Dialogue embedding
indicates whether the current phoneme is in a dialogue in the
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Figure 3: The framework of GAN based post-filtering.

story. Sentence type was obtained from the raw text according
to its punctuation.

The structure of the LSTM-RNN is shown in Figure 2.
There are four hidden layers in this architecture stacked by a
feedforward layer and three bidirectional LSTM-RNN layers
with 1024 nodes in each layer. The network was trained using
Stochastic Gradient Descent (SGD) algorithm. The training
stopped if no new best error on the validation set could be
achieved within the last 20 epochs.

3.4. GAN-based post-filtering

Conventional deep learning based SPSS methods generally
adopt minimum MSE as the criteria for acoustic modeling,
which could guarantee the robustness of generated acoustic
features. However the generated acoustic features are over-
smoothed and the generated speech sounds muffled due to
the MMSE criteria. Recently, GAN [29] has been proposed
as described in previous sections. As an alternative training
method for generative model, GAN is a promising method to
relieve the over-smoothing effect of acoustic models trained by
MMSE criteria and improve the segmental quality of synthe-
sized speech.

A straightforward application to utilize GANs in SPSS
systems is to predict acoustic features given linguistic features
directly by a GAN. However, preliminary experiments showed
that there were some artifacts in the generated spectrum, which
makes the synthetic speech sound uncomfortable.

In this section, a method to utilize GANs in SPSS system
and walk around the problem of robustness was introduced. We
proposed a GAN-based post-filter method, in which linguistic
feature and synthetic mel-cepstrum were sent to the generator
(G) of GAN as condition to predict the natural mel-cepstrum.
The discriminator (D) in GAN tried to discriminate the natural
mel-cepstrum and the generated ones by G conditioned on
linguistic features. The framework of the model is shown in
figure 3.

During test, synthetic mel-cepstrum predicted by baseline
system was sent to the GAN along with linguistic feature as
conditions for GAN prediction, which makes this method a
GAN-based post-filter. Several kinds of GANs have been
tried in preliminary experiments, including conventional GAN
[29], wasserstein GAN (WGAN) [30] and least square GAN
(LSGAN) [31], and LSGAN is adopted in our system for its
ability of fast convergence.

3.5. WaveNet-based neural vocoder

In the generation phase of the present vocoder-based speech
synthesis system, the quality of synthesized speeches are de-
graded due to two major factors. They are the lack of phase
prediction and the artifacts caused by vocoder synthesizer re-
spectively. In order to address these two problems, we proposed
a WaveNet based neural vocoder for waveform generation



Table 1: Systems compared in the subjective text.

system description
LSTM-RNN  The LSTM-RNN based baseline system
GAN GAN based postfilter on baseline system
WaveNet WaveNet neural vocoder on GAN generation

LSTM-RNN GAN WaveNet

Figure 4: Mean opinion score on naturalness of three compared
systems.

instead.

WaveNet is a neural autoregressive generative model that
can generate waveforms directly. Given a waveform © =
{zo, 1, ..., z7_1}, the joint probability of all these samples is
represented as follows:

T—-1

p@; A) = [] p(ilwo, 21, .o mea). (1

t=0

As equation(1) indicates, each waveform sample is only related
to the samples at all previous timesteps. So that WaveNet can
generate waveforms sample by sample with no demands for
speech processing related assumptions or manipulations. Thus
no artifacts will be brought in.

In the framework of WaveNet, the conditional probability
distribution p(x¢|zo, z1, ..., Tt—1) in equation(1) is modeled by
a stack of convolutional layers. The output of each layer is:

z=tanh(W; i xy) ©c(Wy i *y), 2)

where y, z are the input and output vectors, k denotes the
layer index, f and g represent the filter and gate, respectively,
Wi and Wy are trainable convolution filters, * denotes
a convolution operator, ® is an element-wise multiplication
operator, o (-) denotes a sigmoid function.

Additional input can be added to WaveNet to guide
the waveform generation. Now given the additional input
h, the waveform is modeled by a conditional probability
distributionP(x|h). The activation function from equation(2)
becomes:

z = tanh(Wy pxy+ Vi pxh) 00 (Wy pxy+ Vg kxh), (3)

where V; . and Vg, are learnable convolution filters. By
conditioning WaveNet on linguistic features, the text-to-
speech(TTS) system achieved state-of-the-art performance.
It outperformed both LSTM-RNN based SPSS and the
HMM-based unit selection.
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Figure 5: Boxplot of similarity scores of each submitted system.

Considering of the successful application of WaveNet in
TTS, we try an alternative use of the conditional WaveNet in
our system. By conditioning WaveNet on acoustic features, a
WaveNet based neural vocoder is implemented. It can learn the
relationship between acoustic features and waveform samples
automatically. This neural vocoder is used to replace the con-
ventional vocoder so that waveforms can be generated directly.
The quality of synthetic speeches is supposed to be further
improved. The acoustic features include mel-cepstrum, /'0 and
the U/V decision in our system. During the training stage,
natural acoustic features extracted by STRAIGHT vocoder are
used. While at synthesis stage, the predicted acoustic feature
is fed to the input of WaveNet and waveforms are generated
through this neural vocoder.

As the original 8bit quantization introduced quantization
noise in synthetic speeches, we proposed to use a 10bit quan-
tization scheme instead, in order to alleviate this problem.
WaveNet with 3 blocks, which was 30 layers in total, was used
in our system. The model was optimized with Adam algorithm.

3.6. Internal experiment

We conducted a listening test on the Amazon Mechanical Turk
(ATM) crowd sourcing platform!, to verify the performance
of the proposed method. Table 1 presents the three systems
that were compared in the test. Results in figure 4 proves the
effectiveness of the proposed method. The WaveNet neural
vocoder system was used to build our final submitted voices.

4. Evaluation

In this section, we will present the official evaluation results of
our system. Our system identifier is G.

Figure 5 presents the boxplot of mean opinion scores
(MOS) of each submitted system on similarity. Our system G
achieved a similarity score of 3.1, which shows no statistical
difference with system K, L, M, Q and ranks 5th in all

Thttps://www.mturk.com
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Figure 6: Boxplot of naturalness scores of each submitted
system.

Table 2: Mean opinion scores of paragraph test.

1 G Best except G and I

Overall 38.1 328 31.6

Pleasantness 38.1 318 324
Speech Pauses 36 34 31
Stress 36 33 32
Intonation 37 33 32
Emotion 38 34 34
Listening effort  36.6  32.8 31.1

submitted systems. As we know, system B is the Festival
unit selection benchmark system and system I is HMM-based
unit selection system from IFLYTEK research. This shows
that our proposed parametric waveform modeling system
performs not good enough in similarity comparing with unit
selection systems. The accuracy of modeling needs to be
further improved.

Figure 6 shows the boxplot of MOS of each system on
naturalness. Our system achieved MOS of 3.6, which shows
no statistical difference with system E, L, P and ranks 2nd
place in all submitted system. It’s a considerable performance
comparing with unit selection systems.

As shown in Figure 7, the word error rate (WER) of our
system is 35% on the intelligibility test, ranking Sth in all
submitted systems. We found that there were some U/V error in
the synthesised speech of our system, which was probably one
of factors that degrading the performance in intelligibility.

The scores of our system in the paragraph test are presented
in Table 2. Our system ranks 2nd in overall impression and
all other subjective metrics except pleasantness. Therefore, we
compared our system G, the best system I and the highest score
except system G and I. Figure 8 showed the comparison. The
results indicated that the generation of wavenet based neural
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Figure 7: Boxplot of WER of each submitted system.
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Figure 8: Comparison between system I, G and best except G
and I.

vocoder performs slight weak in pleasantness.

5. Conclusions

This paper presented the details of building the USTC sys-
tem for the evaluation of Blizzard Challenge 2017. We built
a parametric system that modeling speech waveforms. The
LSTM-RNN based models were used in our baseline system
for front-end text processing, back-end duration modeling and
acoustic modeling. Then, we adopted a GAN based post-
filtering to relieve the over-smoothing in acoustic modeling.
In order to break the constraint of traditional mel-cepstrum
vocoder, a WaveNet based neural vocoder was utilized to model
speech waveforms from acoustic feature. The effectiveness of
our system is verified by both our internal experiments and
official evaluation results. Our system achieved a considerable
performance with unit selection system. The future work will
be further investigating the WaveNet based neural vocoder to
achieve a more stable and robust SPSS system.
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