
The “Uprooted” MaryTTS Entry for the Blizzard Challenge 2017

Sébastien Le Maguer1, Ingmar Steiner1,2

1Saarland University, 2DFKI GmbH
Saarbrücken, Germany

{slemaguer|steiner}@coli.uni-saarland.de

Abstract
The MaryTTS system is a modular text-to-speech (TTS) sys-
tem which has been developed for nearly 20 years. This paper
describes the MaryTTS entry for the Blizzard Challenge 2017.
In contrast to last year’s MaryTTS system, based on a unit se-
lection baseline using the latest stable MaryTTS version, the
basis for this year’s system is a new, experimental version with
a completely redesigned architecture.
Index Terms: MaryTTS, parametric synthesis, Blizzard Chal-
lenge, modularity

1. Introduction
This paper presents the MaryTTS system entered into the Bliz-
zard Challenge 2017. This entry is centered on the use of a
new process to extract the descriptive features. As a back-end,
we used the hidden Markov model (HMM) based speech syn-
thesis system (HTS) [1], which added support for deep neural
network (DNN) modeling in v2.3.1.

Previous versions of the MaryTTS system have participated
in the Blizzard Challenge, from 2006 to 2009 and 2012 to 2013,
and the corresponding papers document the implementation and
evolution of the unit selection [2, 3], multilingual [4, 5], and
HMM based synthesis [6, 7] capabilities. Last year’s submis-
sion [8] was focused on a baseline for a new voicebuilding pro-
cess with the current stable MaryTTS architecture for unit se-
lection as a back-end.

The paper is organized as follows. Section 2 briefly presents
the evolution of the architecture of MaryTTS. Section 3 de-
scribes the configuration of our system for the 2017 Blizzard
Challenge, Section 4 discusses the results, followed finally by a
conclusion in Section 5.

2. Evolution of the MaryTTS architecture
MaryTTS is a text-to-speech (TTS) system which has been de-
veloped at DFKI and Saarland University for nearly 20 years
[9]. A principal design feature of MaryTTS is its modular ar-
chitecture, which allows easy modification or extension of the
processing pipeline. This is particularly valuable for researchers
focusing on one part of this pipeline. Given a baseline process,
changing only one module will allow researchers to evaluate
their work – and inspect the process – more accurately.

Over the history of its development, MaryTTS has under-
gone several major reorganizations in its software structure,
and the complexity of the system has grown significantly. It
was initially implemented as a collection of Perl scripts, then
rewritten in Java, and first publicly released under a free, open
source software (FOSS) license in 2006. In the scope of vari-
ous projects, a number of developers with different backgrounds
have contributed to the codebase at different times (cf. Fig-
ure 1), leading to heterogeneous code style and patterns.

Constrained by the technical landscape during the early
phase of MaryTTS development, the modular paradigm was ini-
tially limited to a custom runtime class architecture, while the
build system and centralized source code management (SCM)
led to a monolithic codebase. Switching the build system from
Ant to Maven, and more recently to Gradle [10], migrating the
SCM to Git, and distributing individual software components
via repositories such as Bintray [11], has allowed us to extend
the modularity to the entire codebase.

The old architecture’s implementation of modularity lim-
ited to the class level, combined with the complexity of the
codebase, made the system increasingly difficult to maintain
and extend in a flexible way. To solve these fundamental is-
sues, we are currently in the process of refactoring the MaryTTS
codebase, in order to align it with the design concepts at the
software engineering level.

The main difference to the old architecture is the replace-
ment of the module-internal XML data representation with a
Java object oriented representation using a lightweight imple-
mentation of ROOTS [12, 13]. Another important feature is
the introduction of serializers which allow the users to im-
port/export any kind of data in the system. For the moment, it
is possible to import text and MaryXML data, and we are able
to export MaryXML, JSON, TextGrid, HTS labels (compatible
with Festival), and custom HTS labels (using another set of sep-
arators which facilitate the extension of the property list). This
redesigned architecture is described in detail in [14].

3. System configuration for Blizzard
For this year’s Blizzard Challenge, we chose to use a new,
experimental workflow based on pyHTS [15] and the DNN-
enabled HTS v2.3.1 [1]. Portions of this workflow may serve
as a prototype for future voicebuilding pipelines in MaryTTS.

The modules used for the English front-end processing are
the same as last year. The remainder of the data processing and
synthesis system are detailed below.

3.1. Data preparation

First of all, the data package provided by the Blizzard Challenge
organizers was stored in an internal repository, and processed by
an intermediate project, managed by the Gradle build automa-
tion platform [10].

The initial step in the data preparation consisted in patching
the data, fixing spurious typos and formatting errors in the text
files, problems with the segmentation (*.lab) files, and incon-
sistencies between the recorded and transcribed content. Any
audio files in WMA format were also decoded to PCM WAV
format during this step (using FFmpeg [16]), in order to avoid
downstream compatibility issues.

Since not all audiobooks were accompanied by correspond-
ing text files, we manually extracted the text from several PDFs



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Marc Schröder
Anna Hunecke

Sacha Krstulović
Oytun Türk

Marcela Charfuelan
Sathish Pammi
Ingmar Steiner

Sébastien Le Maguer

DFKI, project lead DFKI Saarland University external Blizzard Challenge entry

Figure 1: Rough timeline of the core developer team for open-source MaryTTS at DFKI and Saarland University, with Blizzard
Challenge participation

and created segmentation files to align the text on each page
with the audio. However, as our resources for this task were
limited, we ended up using data from only 44 audiobooks:

AMidsummerNightsDream
AndroclesAndTheLion
AroundTheWorldIn80Days
Bears
BlackBeauty
BrerRabbitAndTheBlackberryBush
ChickenLicken
CleverRabbitAndTheLion
Dinosaurs
Elephants
GoldilocksAndTheThreeBears
HanselAndGretel
HowElephantsLostTheirWings
KingDonkeyEars
KnightsAndCastles
LittleRedRidingHood
Macbeth
OldMotherHubbard
OnAPirateShip
OnTheMoon
RailwayChildren
RainyDay

RobinHood_picturebook
RomeoAndJuliet
StoneSoup
StoryOfFootball
SunnyDay
TheBoyWhoCriedWolf
TheDaydreamer
TheDragonAndThePhoenix
TheEmperorAndTheNightingale
TheEnormousTurnip
TheGingerbreadMan
TheHareAndTheTortoise
TheInchPrince
TheLittleGiraffe
TheMousesWedding
TheMusiciansOfBremen
TheReluctantDragon
TheRunawayPancake
TheThreeLittlePigs
ThereWasACrookedMan
WhyTheSeaIsSalty
WindInTheWillows

_picturebook↪→

To bootstrap the data extraction for the available data, we
assembled the orthographic text, along with the audio and tran-
scribed segmentation, into a nested data structure to store book,
paragraph, and line level alignment with the segmented audio.
This data structure was serialized to JSON format as shown in
Listing 1. In this way, each line from each book’s text could
be processed individually, but with line and paragraph number
stored in the file basename.

The text files were processed to predict the syllable struc-
ture and phone sequence for each utterance, and serialized to
MaryXML (see Listing 2). This processing was done using an
internal snapshot build of MaryTTS 6 with a British English
lexicon built from the Oxford Advanced Learners Dictionary
provided for Festival v2.4. A total of 328 out-of-vocabulary
tokens (including names of characters, places, and dinosaurs)
were manually transcribed and provided as an auxiliary dictio-
nary to ensure correct pronunciation.

The audio files were first transcoded to FLAC from their
original compressed format, then upsampled to 48 kHz for
voicebuilding, and downsampled to 16 kHz for automatic
forced alignment. Since we extracted only the segmented utter-
ances, concatenating them to one audio file per line of text, we
ended up with a total of 3867 audio files containing 3 h, 57 min
of speech.

We used a patched version of the Montreal Forced Aligner

[17] (v0.8.1) running inside a Docker [18] container1 to train
and align the phonetic segments. The word-level pronunciation
for all tokens was first extracted from the MaryXML files and
compiled into a custom dictionary to prevent out-of-vocabulary
issues during the forced alignment.

Finally, the upsampled audio, phonetic segmentation, and
line-wise text files were packaged and deployed to our internal
repository for consumption as data dependencies in the actual
voicebuilding process.

3.2. Descriptive features

The descriptive features are used in two parts of the unit selec-
tion system: the preselection of the units and the prosody pre-
diction. We distinguish a five-item context horizon: previous-
previous (PP), previous (P), current (C), next (N), and next-next
(NN). Based on this context, the descriptive features used are
the following:

• Segment
– phoneme identity (PP, P, C, N, NN)
– no. segments from/to start/end of syllable

• Syllable
– is it accented? (P, C, N)
– is it stressed? (P, C, N)
– no. segments in syllable (P, C, N)
– no. syllables to end of phrase
– no. syllables to end of word
– no. segments in syllable

• Word
– part-of-speech (POS) tag (P, C, N)
– no. syllables in word (P, C, N)
– no. segments in word
– no. words to end of phrase
– no. words to end of sentence

• Phrase
– no. words in phrase (P, C, N)
– no. syllables in phrase (P, C, N)
– no. phrases to end of sentence

• Sentence
– no. words in sentence
– no. syllables in sentence
– no. phrases in sentence
– no. sentences to end of paragraph

• Paragraph
– no. sentences in paragraph

• Speech turn

1https://hub.docker.com/r/psibre/kaldi-mfa/

https://hub.docker.com/r/psibre/kaldi-mfa/


1 {
2 "AMidsummerNightsDream": {
3 "paragraphs": [
4 {
5 "lines": [
6 {
7 "text": "A Midsummer Night's Dream",
8 "basename": "AMidsummerNightsDream_001_001",
9 "utts": [

10 {
11 "audioFile": "build/patched/blizzard_release_2017/enUK/fls/AMidsummerNights

Dream/audio/01_Track_01.mp3",↪→
12 "start": 1.210204,
13 "end": 3.044762,
14 "text": "a midsummer night's dream"
15 }
16 ]
17 }
18 ]
19 },
20 {
21 "lines": [
22 {
23 "text": "Based on the play by William Shakespeare.",
24 "basename": "AMidsummerNightsDream_002_001",
25 "utts": [
26 {
27 "audioFile": "build/patched/blizzard_release_2017/enUK/fls/AMidsummerNights

Dream/audio/01_Track_01.mp3",↪→
28 "start": 3.044762,
29 "end": 5.714739,
30 "text": "based on the play by william shakespeare"
31 }
32 ]
33 },
34 {
35 "text": "Adapted by Lesley Sims.",
36 "basename": "AMidsummerNightsDream_002_002",
37 "utts": [
38 {
39 "audioFile": "build/patched/blizzard_release_2017/enUK/fls/AMidsummerNights

Dream/audio/01_Track_01.mp3",↪→
40 "start": 5.715011,
41 "end": 7.885034,
42 "text": "adapted by lesley sims"

56806 {
56807 "lines": [
56808 {
56809 "text": "WHAM!",
56810 "basename": "WindInTheWillows_picturebook_029_001",
56811 "utts": [
56812 {
56813 "audioFile": "build/patched/blizzard_release_2017/enUK/fls/WindInTheWillows

_picturebook/audio/Wind_in_Willows_final01.mp3",↪→
56814 "start": 243.095692,
56815 "end": 244.550658,
56816 "text": "wham"
56817 }
56818 ]
56819 }
56820 ]
56821 },
56822 {
56823 "lines": [
56824 {
56825 "text": "The stoats and the weasels were banished forever. Toad was so

thrilled, he held a small party to celebrate.",↪→
56826 "basename": "WindInTheWillows_picturebook_030_001",
56827 "utts": [
56828 {
56829 "audioFile": "build/patched/blizzard_release_2017/enUK/fls/WindInTheWillows

_picturebook/audio/Wind_in_Willows_final01.mp3",↪→
56830 "start": 247.240000,
56831 "end": 250.424762,
56832 "text": "the stoats and the weasels were banished forever"
56833 },
56834 {
56835 "audioFile": "build/patched/blizzard_release_2017/enUK/fls/WindInTheWillows

_picturebook/audio/Wind_in_Willows_final01.mp3",↪→
56836 "start": 250.424853,
56837 "end": 254.854649,
56838 "text": "toad was so thrilled he held a small party to celebrate"
56839 }
56840 ]
56841 }
56842 ]
56843 }
56844 ]
56845 }
56846 }

Listing 1: Head and foot of JSON data structure used to process the Blizzard data, with book, paragraph, and line level nesting

– is it direct speech?
Therefore, compared to the previous year, the only note-

worthy addition is the feature indicating that we are in a direct-
speech turn or not. Furthermore, the punctuation information is
not included as it is not available yet in the current MaryTTS
version. This leads to an input feature vector of dimension 40
for the HMM duration training and of dimension 723 for the
DNN training.

3.3. Back-end configuration

In order to achieve the synthesis, we use the pyHTS toolkit.
This toolkit is a set of python scripts which decomposes the
synthesis into two stages. The first stage is the acoustic param-
eter generation which can be HMM or DNN based. The second
stage is the signal rendering using the parameters produced by
the generator. Currently, the combination of STRAIGHT [19]
and SPTK [20] is the main vocoder supported.

Therefore, pyHTS is mainly a wrapper around HTS and
STRAIGHT which uses the same configuration.2 For this entry,
we used the default configuration as presented in Table 1. The
duration is predicted using the HMM and then a feed-forward
DNN is used to predict the other acoustic parameters. Unfor-
tunately, during the training of the DNN part, performance bot-
tlenecks on our department’s shared GPU compute cluster pre-
vented us from debugging our voice. Consequently, we found
ourselves forced to submit our initial, “one shot” synthesis re-
sults.

4. Results
During the Blizzard Challenge, 17 systems were evaluated.
Among these systems, the following are particularly interesting

2In contrast to HTS, the configuration is provided in JSON format.

Ac. param. configuration

MGC 50 coef. + ∆ + ∆∆

F0 Linear interpolated = 1 coef. + ∆ + ∆∆

1 coef. V/UV property
min. F0 = 50 Hz, max. F0 = 320 Hz

BAP 25 coef. + ∆ + ∆∆

Stage configuration

HMM 5 states
DNN 3 hidden layers of 1024 nodes

Sigmoid activation
Adam optimizer

Table 1: Configuration used for the DNN HTS/STRAIGHT
back-end

in our case:

A natural speech;

B Festival benchmark system used for the CSTR entry in the
Blizzard Challenge 2007 [21];

C HTS benchmark system;

D DNN benchmark system using the WORLD vocoder;

O our MaryTTS entry.

The 2017 Blizzard Challenge included three kinds of
subjective evaluation: global mean opinion score (MOS),
semantically unpredictable sentence (SUS) word error rate
(WER) analysis, and MOS in a more focused analysis (such
as intonation, stress, . . . ) at the paragraph level.

In this section, we discuss some of the results.



1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <maryxml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="0.5"

xml:lang="en-US" xmlns="http://mary.dfki.de/2002/MaryXML">↪→
3 <p>A Midsummer Night's Dream
4 <s>A Midsummer Night 's Dream
5 <prosody>
6 <phrase>
7 <t pos="DT">A
8 <syllable stress="1">
9 <ph p="ei">

10 <features>
11 <feature name="words_from_phrase_end" value="3"/>
12 <feature name="ph_from_syl_start" value="0"/>
13 <feature name="syls_from_word_end" value="0"/>
14 <feature name="syl_stress" value="1"/>
15 <feature name="next_syl_stress" value="2"/>
16 <feature name="ph_from_syl_end" value="0"/>
17 <feature name="next_word_pos" value="NNP"/>
18 <feature name="phone" value="ei"/>
19 <feature name="next_word_numsyls" value="3"/>
20 <feature name="phrase_numsyls" value="6"/>
21 <feature name="phrase_numwords" value="4"/>
22 <feature name="sentence_numphrases" value="1"/>
23 <feature name="syl_numph" value="1"/>
24 <feature name="sentence_numwords" value="4"/>
25 <feature name="inDirectSpeech" value="false"/>
26 <feature name="next_syl_numph" value="2"/>
27 <feature name="sentence_from_paragraph_end" value="0"/>
28 <feature name="syls_from_phrase_end" value="5"/>
29 <feature name="word_pos" value="DT"/>
30 <feature name="phrases_from_sentence_end" value="0"/>
31 <feature name="word_numsegs" value="1"/>
32 <feature name="next_phone" value="m"/>
33 <feature name="word_numsyls" value="1"/>
34 <feature name="next_next_phone" value="ih"/>
35 <feature name="syl_accent" value="false"/>
36 <feature name="sentence_numsyllables" value="6"/>
37 <feature name="next_syl_accent" value="false"/>
38 <feature name="words_from_sentence_end" value="3"/>
39 <feature name="paragraph_numsentences" value="1"/>
40 </features>
41 </ph>
42 </syllable>
43 </t>
44 <t pos="NNP">Midsummer
45 <syllable stress="2">
46 <ph p="m">
47 <features>
48 <feature name="words_from_phrase_end" value="2"/>
49 <feature name="ph_from_syl_start" value="0"/>
50 <feature name="syls_from_word_end" value="2"/>
51 <feature name="syl_stress" value="2"/>
52 <feature name="next_syl_stress" value="1"/>
53 <feature name="prev_word_numsyls" value="1"/>
54 <feature name="ph_from_syl_end" value="1"/>
55 <feature name="next_word_pos" value="NNP"/>
56 <feature name="phone" value="m"/>
57 <feature name="next_word_numsyls" value="1"/>
58 <feature name="prev_phone" value="ei"/>
59 <feature name="phrase_numsyls" value="6"/>
60 <feature name="phrase_numwords" value="4"/>
61 <feature name="sentence_numphrases" value="1"/>
62 <feature name="syl_numph" value="2"/>

[. . . ]
672 </features>
673 </ph>
674 </syllable>
675 </t>
676 </phrase>
677 </prosody>
678 </s>
679 </p>
680 </maryxml>

Listing 2: A MaryXML excerpt from AMidsummerNights
Dream 001 001.xml, with serialized phone-level features

4.1. Scoring evaluation results

The scoring evaluation results are presented in Figures 2a to 2c
for the paragraph-level overall impression, sentence-level natu-
ralness, and sentence-level similarity, respectively.

In all of the cases, our system was rated among the worst.
Even more concerning is the fact that, even though we used
a DNN approach with enriched labels, our system still scored
lower than the HMM baseline. This can be attributed to two
main factors.

First, the rendered audio sounds very buzzy. Secondly, and
more problematically, some parts of the signals are just noise
and completely unintelligible. But this was not unexpected,
considering the aforementioned GPU issues, which prevented
us from further investigating the source of these issues and fix-
ing them in time for the submission.

4.2. SUS results

The second kind of analysis provided is the SUS WER results
presented in Figure 2d. The results show that our system per-
formance is once again among the worst. This confirms that the
noisy audio is a significant problem, which needs to be resolved.

5. Conclusion
In conclusion, we have presented the MaryTTS entry to the
Blizzard Challenge 2017. This system can be considered a first
step in the refactoring process as we have used the new architec-
ture to predict the descriptive features. We used the off-the-shelf
HTS v2.3.1 as a back-end to produce the speech signals based
on the descriptive features produced by HTS.

The results achieved by our system in this year’s evaluation
indicate a wide margin for improvement.

In the next challenge, we plan to focus on the back-end sup-
port in MaryTTS. This includes the introduction of unit selec-
tion, HMM, and DNN based synthesis into the system. There-
fore, assuming these components work as expected, we would
be able to focus on the core of the challenge: improving the
synthesis.

6. Acknowledgements
This research was funded by the German Research Foundation
(DFG) as part of SFB 1102 “Information Density and Linguistic
Encoding” at Saarland University.



597 590 597 596 597 595 592 593 595 592 595 593 596 592 594 596 593n

A I G L E P B M K Q D H J F C O N

0
1

0
2

0
3

0
4

0
5

0
6

0

System

S
co

re

(a) Overall paragraph MOS results.

518 516 518 519 518 517 516 517 518 517 516 518 517 516 513 517 519n

A I G L E P B M K Q D H J F C O N

1
2

3
4

5

System

S
co

re

(b) Naturalness MOS results.

257 258 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257n

A I G L E P B M K Q D H J F C O N

1
2

3
4

5

System

S
co

re

(c) Similarity MOS results.

I G L E P B M K Q D H J F C O N

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

475 478 474 474 459 473 479 472 460 471 460 469 462 464 421 290n

System

W
E

R
 (

%
)

(d) SUS WER results.

Figure 2: Selected results from Blizzard Challenge 2017 evaluation. Festival is shown in green, HTS in yellow, the DNN baseline in
blue, and MaryTTS in red.



7. References
[1] “HMM-based speech synthesis system (HTS).” URL: http://hts.

sp.nitech.ac.jp/

[2] M. Schröder, A. Hunecke, and S. Krstulović, “OpenMary – open
source unit selection as the basis for research on expressive syn-
thesis,” in Blizzard Challenge Workshop, Pittsburgh, PA, 2006.
URL: http://festvox.org/blizzard/bc2006/dfki blizzard2006.pdf

[3] M. Schröder and A. Hunecke, “MARY TTS participation in
the Blizzard Challenge 2007,” in Blizzard Challenge Workshop,
Bonn, Germany, 2007. URL: http://festvox.org/blizzard/bc2007/
blizzard 2007/blz3 007.html

[4] M. Schröder, M. Charfuelan, S. Pammi, and O. Türk, “The MARY
TTS entry in the Blizzard Challenge 2008,” in Blizzard Chal-
lenge Workshop, Brisbane, Australia, 2008. URL: http://festvox.
org/blizzard/bc2008/dfki Blizzard2008.pdf

[5] M. Schröder, S. Pammi, and O. Türk, “Multilingual MARY TTS
participation in the Blizzard Challenge 2009,” in Blizzard Chal-
lenge Workshop, Edinburgh, Scotland, 2009. URL: http://festvox.
org/blizzard/bc2009/dfki Blizzard2009.pdf

[6] M. Charfuelan, “MARY TTS HMM-based voices for the Bliz-
zard Challenge 2012,” in Blizzard Challenge Workshop, Port-
land, OR, 2012. URL: http://festvox.org/blizzard/bc2012/DFKI
Blizzard2012.pdf

[7] M. Charfuelan, S. Pammi, and I. Steiner, “MARY TTS unit se-
lection and HMM-based voices for the Blizzard Challenge 2013,”
in Blizzard Challenge Workshop, Barcelona, Spain, 2013. URL:
http://festvox.org/blizzard/bc2013/DFKI Blizzard2013.pdf

[8] S. Le Maguer and I. Steiner, “The MaryTTS entry for
the Blizzard Challenge 2016,” in Blizzard Challenge, Cuper-
tino, CA, USA, 2016. URL: http://festvox.org/blizzard/bc2016/
MARYTTS Blizzard2016.pdf

[9] M. Schröder and J. Trouvain, “The German text-to-speech syn-
thesis system MARY: A tool for research, development and
teaching,” in Speech Synthesis Workshop, Perthshire, Scot-
land, 2001. URL: http://www.isca-speech.org/archive open/ssw4/
ssw4 112.html

[10] “Gradle build tool: Modern open source build automation.” URL:
https://gradle.org/

[11] JFrog, “Bintray: Download center automation & distribution.”
URL: https://bintray.com/

[12] N. Barbot, V. Barreaud, O. Boeffard, L. Charonnat, A. Delhay,
S. Le Maguer, and D. Lolive, “Towards a versatile multi-layered
description of speech corpora using algebraic relations,” in Inter-
speech, 2011, pp. 1501–1504.

[13] J. Chevelu, G. Lecorvé, and D. Lolive, “ROOTS: a toolkit for easy,
fast and consistent processing of large sequential annotated data
collections,” in International Conference on Language Resources
and Evaluation (LREC), Reykjavik, Iceland, 2014. URL: http://
lrec-conf.org/proceedings/lrec2014/summaries/338.html

[14] S. Le Maguer and I. Steiner, “Uprooting MaryTTS: Agile process-
ing and voicebuilding,” in 28th Conference on Electronic Speech
Signal Processing (ESSV), Saarbrücken, Germany, 2017. URL:
http://essv2017.coli.uni-saarland.de/pdfs/LeMaguer.pdf

[15] S. Le Maguer, “A python wrapper for HTS synthesis (pyHTS).”
URL: https://github.com/seblemaguer/pyhts

[16] “FFmpeg.” URL: http://ffmpeg.org/

[17] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal Forced Aligner: trainable text-speech align-
ment using Kaldi,” in Interspeech, Stockholm, Sweden, 2017.

[18] “Docker – build, ship, and run any app, anywhere.” URL: https:
//www.docker.com/

[19] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, “Re-
structuring speech representations using a pitch-adaptive time-
frequency smoothing and an instantaneous-frequency-based F0
extraction: Possible role of a repetitive structure in sounds,”
Speech Communication, vol. 27, no. 3-4, pp. 187–207, 1999.

[20] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, “An adapta-
tive algorithm for mel-cepstral analysis of speech,” in Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 1, 1992, pp. 137–140.

[21] K. Richmond, V. Strom, R. A. Clark, J. Yamagishi, and S. Fitt,
“Festival Multisyn voices for the 2007 Blizzard Challenge,” in
Blizzard Challenge Workshop, Bonn, Germany, 2007. URL: http:
//festvox.org/blizzard/bc2007/blizzard 2007/blz3 006.html

http://hts.sp.nitech.ac.jp/
http://hts.sp.nitech.ac.jp/
http://festvox.org/blizzard/bc2006/dfki_blizzard2006.pdf
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_007.html
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_007.html
http://festvox.org/blizzard/bc2008/dfki_Blizzard2008.pdf
http://festvox.org/blizzard/bc2008/dfki_Blizzard2008.pdf
http://festvox.org/blizzard/bc2009/dfki_Blizzard2009.pdf
http://festvox.org/blizzard/bc2009/dfki_Blizzard2009.pdf
http://festvox.org/blizzard/bc2012/DFKI_Blizzard2012.pdf
http://festvox.org/blizzard/bc2012/DFKI_Blizzard2012.pdf
http://festvox.org/blizzard/bc2013/DFKI_Blizzard2013.pdf
http://festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf
http://festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf
http://www.isca-speech.org/archive_open/ssw4/ssw4_112.html
http://www.isca-speech.org/archive_open/ssw4/ssw4_112.html
https://gradle.org/
https://bintray.com/
http://lrec-conf.org/proceedings/lrec2014/summaries/338.html
http://lrec-conf.org/proceedings/lrec2014/summaries/338.html
http://essv2017.coli.uni-saarland.de/pdfs/LeMaguer.pdf
https://github.com/seblemaguer/pyhts
http://ffmpeg.org/
https://www.docker.com/
https://www.docker.com/
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_006.html
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_006.html

	 Introduction
	 Evolution of the MaryTTS architecture
	 System configuration for Blizzard
	 Data preparation
	 Descriptive features
	 Back-end configuration

	 Results
	 Scoring evaluation results
	 SUS results

	 Conclusion
	 Acknowledgements
	 References

