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Abstract

The annual Blizzard Challenge conducts side-by-side test-
ing of a number of speech synthesis systems trained on a com-
mon set of speech data. Similar to 2016 Blizzard challenge,
the task for this year is to train on expressively-read children’s
story-books, and to synthesise speech in the same domain. The
Challenge therefore presents an opportunity to investigate the
effectiveness of several techniques we have developed when ap-
plied to expressive and prosodically-varied audiobook data.

This paper describes the text-to-speech system entered by
The Centre for Speech Technology Research into the 2017 Bliz-
zard Challenge. The current system is a hybrid synthesis system
which drives a unit selection synthesiser using the output from
a neural network based acoustic and duration model. We assess
the performance of our system by reporting the results from for-
mal listening tests provided by the challenge.

Index Terms: Merlin, hybrid speech synthesis, unit selection,
deep neural networks.

1. Introduction

The CSTR entry to this year’s Blizzard Challenge builds on
the hybrid Multisyn [1, 2] system submitted for last year [3].
Hybrid synthesis systems on the basis of target cost function
[4, 5, 6, for example] employ statistical models to predict
acoustic properties of speech thereby brings the benefits of ex-
tremely natural-sounding unit selection (which is unaffected by
the degradations introduced by vocoding [7, 8]).

Similar to last year, the data used for this year’s Chal-
lenge was obtained from professionally-read child-directed au-
dio books and is therefore much more prosodically rich than the
more standard prompt-based speech data. The experiment pre-
sented in [5, 6] established that improving the underlying SPSS
of a hybrid synthesiser results in improvements to the concate-
nated output speech. Therefore, for our previous entry, we
have incorporated two major improvements to the underlying
SPSS model compared to the system presented in [6]: the deci-
sion tree duration model was replaced with a bi-directional long
short-term memory (LSTM) recurrent neural network, and the
feed-forward DNN acoustic model was replaced with an LSTM
network.

Compared to our previous year entry, the text process-
ing and speech parameterization steps are largely unchanged.
Acoustic model prediction is slightly optimised for better pre-
diction of fundamental frequency by adding supra-segmental
features based on acoustic counts and is explained in 2.3.2. A
notable exception is our attempt to smooth the joins: this new
development is described in section 2.6 below. The neural net-
works used in this entry were trained using our open-source
Merlin speech synthesis toolkit [9].

2. System Description
2.1. Data

The database — provided to the Challenge by Usborne Publish-
ing Ltd. — consists of the speech and text of 56 children’s au-
diobooks spoken by a British female speaker. We made use of a
segmentation of the audiobooks carried out by two other Chal-
lenge participants'? and kindly made available to other partici-
pants. The total duration of the audio is approximately 6 hours
after segmentation. Three audiobooks from the given corpus
were held out to act as an internal development set to gauge
system performance before generating the final test data. The
held-out data consists of three full short stories: Goldilocks and
the Three Bears, The Boy Who Cried Wolf and The Enormous
Turnip, having a total combined duration of approximately 10
minutes.

2.1.1. Sentence selection

For sentence selection, we have followed the same approach as
last year. For clarity, we repeat the procedure followed from our
previous year entry [3].

Harnessing the variety of speaking styles present in
expressively-read audiobooks might enable us to produce less
robotic-sounding TTS systems. However, initial experiments
showed that the extreme variation in parts of the training data
for the Challenge resulting in poor unit selection. We therefore
filtered the data using the active learning approach described
in [10]: 198 utterance-level acoustic features are extracted, and
15 sentences initially labelled as keep or too expressive by an
expert listener. Uncertainty sampling [11] using an ensemble
of decision trees was then used to select a further informative
sample to be hand-labelled; this process continued for 20 min-
utes (real time). A classifier built on the entire set of hand-
labelled data was then used to determine the subset of avail-
able sentences to be used for training. 20% of the training sen-
tences were discarded in this way; informal comparison sug-
gested this resulted in more stable synthesis with fewer unwar-
ranted prosodic excursions.

2.2. Text processing

We have used Festival’s English front-end with the British Re-
ceived Pronunciation version of the Combilex lexicon [12]. 163
items were added to cover words appearing in the training data
but otherwise absent from the dictionary. There were slight dif-
ferences in the lexicon-lookup procedures used in preparing the
annotation for training the SPSS model and those employed by
the Festival front-end used for Multisyn. The resulting inconsis-
tencies were dealt with by aligning the DNN’s phone sequences
to those expected by Multisyn in an ad hoc fashion and is simi-
lar to our previous year entry.
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Word and syllable level vector representations were in-
cluded, according to the method described in [13]. These were
learned by taking counts of acoustic events of f0 and energy
stylized by clustered vectors and mean values defined over syl-
lables or words. The training data available for the Challenge
was used to learn these matrices. Experiments using vectors
representations learned over a larger database of a different
speaker, but we have observed that results were comparable
with speaker-dependent vectors learned on a smaller database.

2.3. Parametric system

The parametric system was implemented using DNNs in a con-
ventional two-stage approach. In the first stage, a duration
model is used to predict phone durations to form frame-level
linguistic features. In the second stage, an acoustic model is
used to generate parameters from those linguistic features.

2.3.1. Duration model

The duration model trained for our entry to the challenge made
use of a simple and straightforward approach with feed-forward
neural networks (DNNs) as demonstrated in [14, 15]. The du-
ration model is trained on the aligned data and generates state-
level durations given phone-level linguistic features.

The described approach was used only to generated dura-
tions, which were then used to form frame-level linguistic fea-
tures used as input in the generation of acoustic parameters. The
hybrid Multisyn unit-selection system, however, does not make
use of any duration-related features in its target cost function.
Including such features in the unit selection process is left for
future work.

2.3.2. Acoustic model

The linguistic features extracted from the front-end were con-
verted to numerical vectors using a set of continuous and binary
questions [9]. To these, we appended the syllable and word level
vector representations based on acoustic counts [13]. The du-
rations generated by the duration model described above were
used to propagate all feature to frame-level. These frame-level
feature vectors were then used as input to an acoustic model.

A feedforward neural network was trained at the frame-
level to map linguistic inputs to vocoder parameters consisting
of static and dynamic (delta and delta-delta) features. These
acoustic parameters include 60 mel-cepstra coefficients, 25
band aperiodicities, log-f0, and a binary voicing decision. Max-
imum likelihood parameter generation (MLPG) and postfilter-
ing are then applied to the generated acoustic parameters. In
SPSS these parameter trajectories would then be passed through
the vocoder to synthesize a speech waveform. Instead, we use
them as targets for selecting waveform units.

Within each phone unit, generated parameters are split uni-
formly across time into 4 sections. A Gaussian distribution is
then fitted for each sub-phone section of acoustic parameters.
The variances of these Gaussian distributions are floored at 1%
of the global variance per parameter [6].

The distributions associated with each of the 4 sub-phone
sections are used to construct a diphone representation for the
target utterance. To construct a diphone representation, we
take the first or last 2 sections associated with its correspond-
ing phones. Comparable distributions were generated for the
diphone candidates in the unit database, based on vocoder pa-
rameters extracted from the training data and natural durations
obtained by forced alignment.

2.3.3. Feature extraction

Phone sequences were obtained from the text using Festi-
val [16]. Festvox’s ehmm method [17] was used to modify
the phone sequences by the insertion of acoustically-motivated
pauses; A state-level forced alignment of these phone sequences
with the sentence-segmented audio was then obtained using
context-independent HMMs, similar to [18]. Each phone was
then characterised by a vector of 481 text-derived binary and
numerical features — a subset of the features used as decision-
tree clustering questions in the HTS demo [19], adapted for our
phoneset.

These questions included linguistic contexts such as quin-
phone identity which are added at phone-level, and part-of-
speech, positional information relating to syllables, words,
phrases, etc. All numerical features are given as input (after
appropriate normalisation) directly to the network, and not en-
coded as (for example) 1-of-K.

For duration modelling, all these features were used as in-
put and normalised to the range of [0.01, 0.99]. The output
for training is an five-dimensional vector of durations for every
phone, comprising five sub-state durations.

For acoustic modelling, the input uses the same features
as duration prediction, to which 9 numerical features were ap-
pended. These capture frame position in the HMM state and
phoneme, state position in phoneme, and state and phoneme
duration, similar to [18].

The speech data was analysed with STRAIGHT [20], and
each 5ms frame was represented using 60 mel cepstral coeffi-
cients (MCC), measures of aperiodicity in 25 frequency bands
(BAP), logarithmic Fjy interpolated through unvoiced regions,
and a binary voicing feature. These 87 static features were
supplemented with delta and delta-delta features, and for both
the duration and acoustic data, a per-component mean and vari-
ance normalisation was applied prior to model training, with the
transformation reversed as part of synthesis.

2.3.4. Duration and acoustic model training

For the duration model, we have used 481-dimensional binary
and continuously valued feature vectors as input. Its output was
a 5-dimensional feature vector representing state durations in
terms of frames. The model was defined to be 6 feedforward
hidden layers, each with 1024 nodes, using the tanh activation
function. Mini batch size was set to 64 and learning rate was set
to 0.002, being was reduced by 50% with each epoch after the
first 10 training epochs.

For the acoustic model, we have used the same 481-
dimensional feature vector representing linguistic features. To
these, we added syllable and word level vector representations
spanning a window of 3 units. Nine frame-level features were
included according to [18] and available from [9]. The input
vector to the acoustic models consisted of a total of 1900 di-
mensions. The model consisted of 6 feedforward hidden layers,
each with 1024 nodes, using the fanh activation function. Mini-
batch was set to 256 and remaining parameters were identical
to the duration model.

2.4. Unit selection waveform renderer

For unit selection, we have followed the same approach as last
year. For clarity, we repeat the procedure followed from our
previous year entry [3].

A modified form of Festival’s Multisyn engine [2] was used
for the unit selection stage of our system. To compare the suit-



ability of a given candidate diphone in the unit database with
the 4 distributions representing a synthesised diphone, the sym-
metrised Kullback Leibler divergence (KLD) [21] is used. The
KLD is computed between each of the 4 candidate unit’s distri-
butions and the corresponding target unit distributions individ-
ually. The resulting 4 scores are then summed to produce the
final target score.

The standard Multisyn join cost (sum of distances between
12 MFCCs, fo and energy from the frame either side of the
join) is retained, as well as the standard pre-selection criterion
of candidate units (by matching diphone identity). The standard
Multisyn Viterbi search (with pruning to reduce the search time)
is performed in order to optimise target cost and join cost. Also
the standard Multisyn back-off rules are used where the target
diphone to be synthesised is not present in the training data.

2.5. Speech synthesis

At synthesis time, duration is predicted first, and is used as an
input to the acoustic model to predict the speech parameters.
Maximum likelihood parameter generation (MLPG) [22] using
variances computed from the training data was applied to the
output features for synthesis, and spectral enhancement post-
filtering was applied to the resulting MCC trajectories. These
parameter trajectories are then used to produce diphone coeffi-
cients. The Festival Multisyn engine was used to compute the
target and joint cost between target unit and pre-selected candi-
date units to select the final candidate, as explained above. The
final waveform synthesis was done by joining the selected units.
An additional smoothing and post-modification of prosody was
performed during joining the units and is explained in below
section.

2.6. Concatenation and join smoothing

The selected waveform units are parameterised by using the
method proposed in [23]. It extracts pitch synchronous speech
features in a frame-by-frame basis, describing the complex
spectra and FO contour. The correction/smoothing operations
are performed over these features to produce seamless concate-
nation of units.

2.6.1. Concatenation and correction of FO contours

The F'0 mid point (F'0,,) between two consecutive units is
given by F0,, = (FO0,[N, — 1] + F0.[0])/2, where p means
preceding unit, ¢ current unit, and NN is the unit length in frames.

Then, the slope of the FO contours of both units are adjusted
to reach the F'0O,, just in the join location. The corrected F'0
contours are computed by the Equations 1 and 2.

FO.[n.] = FOc[ne] + (FO., — F0.[0]) - (1_CN +1) n
Ao < o R PO~ 7

Where F(0' is the corrected F0, and n is the frame index within
each unit. After having all the corrected £'0 contours for all the
units, these are appended building a single F'0 contour for the
whole sentence.

2.6.2. Spectral concatenation and smoothing

Basically, it is done by overlapping and crossfading the complex
FFT spectra of two consecutive units. Some extra frames are ex-
tracted from the sources, so the units can be overlapped without
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Figure 1: Our system(E): Mean opinion score for naturalness
of the synthesized speech with ratings from all listeners.

affecting their expected locations in the synthesised waveform.
Three extra frames on each side of the units are extracted from
the sources, thus an overlap of seven frames around the joins is
produced.

The FFT complex spectrum S is derived from the parame-
ters proposed in [23], M, R, and I, by S = M - (R+ Ij). The
crossfade is linearly applied to mix the FFT complex spectra of
two consecutive units, progressively. It is seven frames length,
and in case that a unit is too short, the crossfade is shortened
accordingly.

After performing this operation on every join, the FFT com-
plex spectra of all the units are concatenated producing a single
complex spectra stream, that describes the whole utterance.

Finally, the signal is synthesised by converting the FFT
complex spectra to time domain, and applying Pitch Syn-
chronous Overlap-Add as explained in [23], using the corrected
F0’ contour.

2.7. Paragraph-level synthesis

From the sentences synthesised in this way, files were made
containing whole paragraphs, chapters and books as required by
the Challenge by simply concatenating the waveforms. While
proper exploitation of long-distance contexts ought to improve
synthesis quality, no contexts outside the current sentence were
used for the present submission.

3. Results

The identifier for our system in the published results is E.

3.1. Naturalness

Mean opinion scores for naturalness from all listeners on book
sentences are shown in Figure 1. In our discussion, we make
use of the published statistical analysis of the results at 1% level
with Bonferoni corrected alpha) [24]. Our system outperformed
all three baselines (systems B, C and D). Among the 12 other
challenge participants, our system is outperformed only by a
single system (I). The same trend can be seen across the scores
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Figure 2: Our system(E): Mean opinion score for speaker simi-
larity with ratings from all listeners.

made by paid listeners, on-line volunteers and considering rat-
ings only from speech experts, no other system was significantly
better than ours. Overall, our system outperformed 11 out of 15
other systems (including three baselines) evaluated for listening
test.

3.2. Speaker similarity

The mean opinion scores for speaker similarity from all listen-
ers on book sentences are shown in Figure 2. Considering rat-
ings from all listeners (or any other listener group), no other
system was significantly better than ours and our system was
in turn significantly better than 13 other systems. These results
show the effectiveness of waveform concatenation systems for
speaker similarity.

3.3. Evaluation of audiobook paragraphs

We now consider the results for evaluation of audiobook para-
graphs — that have been evaluated on several other factors
like stress, intonation, emotion, pleasantness, listening effort,
speech pauses and overall impression. Considering ratings from
all listeners on overall impression, our system showed similar
performance as in the case of the isolated sentence evaluation
of naturalness and speaker similarity. Only one system (I) out-
performed us and our system was significantly better in turn
than 11 other systems (cf. Figure 3). A similar trend can be
seen across the scores made by speech experts, online volun-
teers and paid listeners. Considering ratings for other individ-
ual factors (e.g., intonation, emotion and pleasantness) from all
listeners, again only system I consistently outperformed ours.
Overall, our system outperforms between 7 and 11 other sys-
tems in evaluation of each of these factors, performing best in
emotion and pleasantness.

3.4. Intelligibility (SUS)

We now consider the results for intelligibility of semantically
unpredictable sentences (making use of the published statisti-
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Figure 3: Our system(E): Mean opinion score for overall im-
pression with ratings from all listeners.

cal analysis of significant difference between word error rates
of the systems). Taking into account ratings from all listeners,
there are only three other systems out of 15 (D, L, and M) signif-
icantly better than ours. Considering only paid listeners, there
are only two other systems (D and L) significantly better than
ours. Out of 15 other systems evaluated by paid listeners, 10
were not significantly more or less intelligible than ours, 3 were
significantly less intelligible, and only 2 significantly more in-
telligible. The results show that our system is quite effective
on intelligibility as well. Overall, our system has shown con-
sistent performance (standing in the top four) in all the factors
evaluated for the Challenge.

4. Conclusions and future work

For this year’s CSTR Blizzard Challenge entry, the hybrid sys-
tem submitted for last year [3] was slightly optimized in acous-
tic modeling for better prediction of FO and performed smooth-
ing between joins.

The results of the evaluation are on the whole very positive,
but there are still a number of potential future improvements
which could be made to the hybrid synthesis system described
here. These include adopting consistent lexicon-lookup for both
the SPSS and unit selection systems, making use of same acous-
tic features for both join and target cost, prediction of phrase
breaks, and the explicit inclusion of predicted duration in the
unit selection synthesis target cost.

Reproducibility: We used the Open Source Merlin toolkit?
for parameter prediction and Festival Multisyn* for unit-
selection.
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