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Abstract
This paper describes the Speect text-to-speech system entry
submitted to the Blizzard Challenge 2016. The focus of this
entry was to build a data driven text-to-speech system that gen-
erates an expressive voice suitable for children’s audiobooks.
The techniques applied for the task of the challenge and the im-
plementation details for the alignment of the audio books and
text-to-speech modules are described. The results of the evalu-
ations are given and discussed.
Index Terms: HMM-based speech synthesis, expressive
speech, audio books, Blizzard Challenge 2016

1. Introduction
This paper presents our third entry into the Blizzard Challenge,
where techniques were applied for the task of building a voice
suitable for children’s audiobooks. Voices that are required
specifically for children’s audiobooks differ from that of con-
ventional audiobooks in the sense that they are read more ex-
pressively. Thus, a suitable voice for children’s audiobooks
would be one that can express various emotions (eg. happy
and sad), speaking styles (eg. whispering, yelling) and multi-
ple character voices that are typically used in story telling. The
training data provided to the participants consisted of recorded
and annotated speech of a single speaker taken from various
children’s stories. In total, approximately 6 hours of unseg-
mented speech data was provided. The data provided was not
entirely aligned, some audio files contained non-speech sounds
and the accompanied text files were provided in varying for-
mats. All the audio book alignments, and utterance and label
generation modules were implemented in-house and only the
supplied recordings and text annotations were used. The re-
mainder of the paper is organised as follows, Section 2 gives
an overview of our text-to-speech (TTS) system, Section 3 de-
scribes our methods for building the voices for the task, Sec-
tion 4 presents the Blizzard challenge evaluation results fol-
lowed by a discussion and conclusion in Section 5.

2. System Overview
The architecture of our TTS system, known as Speect, has been
reported on in previous publications [1, 2, 3] and will be briefly
repeated here. The system consists of the engine and plug-ins,
where the engine 1) loads all required data for a particular syn-
thetic voice, 2) calls and controls the flow of all the synthesis
modules and 3) handles system calls and memory requirements,
while the plug-ins define synthesis modules, which range from
natural language processing modules (NLP) such as text nor-
malization to digital signal processing (DSP) modules, for ex-
ample waveform synthesis. This architecture allows the engine
to remain independent of the language of the synthetic voice as

well as the method of synthesis, requiring only the implementa-
tion of new plug-ins in order to add functionality. The internal
utterance structure is represented as a Heterogeneous Relation
Graph (HRG) [4] as is the case in Festival [5] and Flite [6]. The
system was written in the C language and uses SWIG (Sim-
plified Wrapper and Interface Generator) [7] in order to create
an easily accessible application programming interface (API)
in scripting languages. The following sub-sections describe the
relevant changes that we have made to our system for the Bliz-
zard Challenge.

2.1. Lexicon and pronunciation prediction

Our South African English phone set, which is based on the
Festival MRPA phone set as used in Festival, and described in
[2], together with our grapheme-to-phoneme (G2P) rule set was
used for pronunciation prediction. For the purposes of the chal-
lenge we also added 73 entries (mainly proper names found in
the test set) which did not exist in our source dictionary and
where our G2P failed to produce the correct pronunciation.

2.2. Part-of-speech

Our part-of-speech (POS) tagger was based on the simple
guessed POS tagger in Festival, which contains a closed list of
class words and all other words are assumed to be content class
words. The motivation for using such a naive approach was
that we wanted to test the rest of the NLP based modules us-
ing a POS tagger that we would be able to duplicate in resource
scarce languages.

2.3. Classification and clustering

One of the key challenges to building an expressive text-to-
speech system is the annotation of the expressiveness in the
speech corpus. In most approaches, a separate voice is trained
to represent each emotion and speaking style. When using
speech taken from audiobooks this is a more difficult task as
the speech corpus contains a mixture of emotions and speaking
styles. Manual annotation is typically used as there is no stan-
dard way of annotating such data. For the task of the Blizzard
challenge, such a method would be impractical as it is costly and
time consuming. Therefore an unsupervised clustering tech-
nique, proposed in [8] needed to be used to model the emotion
and voice styles of our voice. The aim of the clustering, is to
cluster the training data into expressions that have a similar na-
ture. Each cluster is then trained separately. Looking at the text
found in audiobooks, most of the expressive speech lies within
direct speech, whereas the text that lies outside the direct speech
are typically read in a narrative or neutral voice. Sentences can
be classified into three types of units: narration, carrier and di-
rect speech. The presence of double quotation marks were used



as markers in order to classify the text accordingly. Text found
in the same sentence as the direct speech but outside the quota-
tion marks were seen as carriers. Sentences that contained no
direct speech were classified as narrative. For example: The
girl said, “I love playing in the garden because of the beautiful
flowers,” and then smiled to herself. Then she plucked one from
the ground.

1. Carrier: The girl said

2. Direct Speech: “I love playing in the garden because of
the beautiful flowers,”

3. Carrier: and then smiled to herself.

4. Narrative: Then she plucked one from the ground.

By segmenting the text in this way, an appropriate tone of
the speech can be conveyed, in this example the tone of the
direct speech will be happy. For clustering, there are three
primary options that can be used for unsupervised clustering
which include using: acoustic data only; text data only or both
the acoustic and text data. For the Blizzard task, it was de-
cided that the data be clustered acoustically. The overall idea
was to train an average voice model using all the data together
and then using Hidden Markov Model (HMM) adaption [9], we
would adapt the average voice model using the data found in
each cluster so that each cluster would resemble a specific style
of expressiveness. In this way, models will be generated based
on clusters that share the same properties. At synthesis time,
the text would then be classified and the corresponding clus-
ter together with its models would be selected to generate the
corresponding speech data.

2.4. Phrasing

Our current prosodic phrasing prediction is based on a simple
naive model using punctuation cues in the text in order to pre-
dict where phrase breaks should be inserted in the synthesised
target utterance. Our goal was to move towards data-driven
techniques due to the lack of hand annotated phrase break data
in our local languages, thereby exploring options we can ap-
ply in our own work. We implemented data-driven phrasing
as described in [10], which builds on an earlier grammar based
phrasing method done in [11]. The method combines the con-
ditional probabilities of POS and phrase break sequence models
using Bayes theorem:

P (bi|Ci, Bi) =
P (bi|Ci) · P (bi|Bi)

P (bi)
(1)

where P (bi|Ci, Bi) is the probability of having a phrase
break at juncture i, given a context of POS features, Ci, and the
context of previous break features, Bi, both observed at i. We
derived acoustic phrase breaks using a similar Hidden Markov
Model Toolkit (HTK) [12] based tool (as described in Section
3.3) in order to extract the natural prosodic phrase breaks of
the speaker. In our model we used a conditional random field
(CRF) in order to model the POS sequence and the previous
phrase break sequence, whereas [10] used a stochastic context
free grammar (SCFG) and a classification and regression tree
(CART) respectively.

2.5. Intonation

The Blizzard Challenge in 2016 required that the voice created
be expressive. One important factor that contributes to the ex-
pressiveness of a voice is being able to successfully model the

intonation of an arbitrary utterance. The Automatic Stylization
and Labelling of Speech Melody (SLAM) approach proposed
in [13] was modified to suit the purposes of modeling the into-
nation for the Speect TTS System.

2.6. SLAM Modeling

The SLAM method is a data-driven approach to apply style la-
bels to segments of an utterance [13]. SLAM allows for label-
ing to occur at all levels of the utterance (Phrase, Word, Sylla-
ble or Phoneme). All frequencies are converted to the semitone
scale and expressed with respect to the mean frequency of the
speaker, f0st using Equation 2.

f0(st) = 12× log2

f0(hz)

f0mean(hz)
(2)

The thresholds for the semitone f0 labels are in Table 1. The
label construction occurs as follows:

1. The frequency at the start (f0start ) of the segment gets
converted using Equation 2. This is then measured
against the thresholds to determine the label.

2. The same process is followed for the frequency at the
end (f0end ) of the segment.

3. Every frequency,f0i , between the start and the end will
be subjected to two difference calculations, ∆f0start

and ∆f0end . The highest difference, ∆f0max will
be considered when evaluating whether f0i is a peak
(f0peak ).

∆f0max = max(∆f0start ,∆f0end) (3)

If ∆f0max > 2 semitones then the peak is significant
enough to receive a label. The position of the peak in the
segment is also noted ( 1 = start, 2 = middle, 3 = end)

The label for the segment is a concatenation of the individual
labels (start label + end label + peak label), the peak label is
omitted when it is not significant. For example, a possible label
could be Hl or mLh2. More details on the SLAM approach can
be found in [13].

2.6.1. Simplified SLAM

The SLAM approach in [13] was modified to suit the purpose
of using it for intonation modeling in a TTS system. Since our
TTS voices are built from data of a single speaker, the calcu-
lated mean was changed to be over the entire corpus rather than
per utterance in the absence of speaker information. The semi-
tone scale was removed and replaced by standardized f0 values.
The threshold values for the standardized f0 labels are in Table
1. A full label is generated using the labeling technique in the
original SLAM approach. The label is then simplified to be up,
down or same based on the beginning and ending of the original
label of the segment.

Table 1: Threshold labels
Labels SLAM thresholds Simplified SLAM thresholds
H f >6 f >2
h 2 <f <6 1 <f <2
m -2 <f <2 -1 <f <1
l -6 <f <-2 -2 <f <-1
L f <-6 f <-2



2.7. Digital signal processing

All of our Blizzard Challenge entries up to date have been statis-
tical parametric speech synthesis (SPSS) based systems, where
the vocoder used in our 2010 entry was a simple source-filter
excitation model and our 2013 entry used a mixed excitation
model. In this entry we explored the use of more advanced
vocoders.

2.7.1. Vocoder

Initially the Harmonic plus Noise Model (HNM) [14] was im-
plemented, with appropriate modifications in order to fit into
the SPSS framework [15]. This was abandoned due to the dif-
ficulties in modeling the maximum voiced frequency or split
between the harmonic and noise bands [16, 17], as well as the
challenges in modeling the non-minimum phase terms [15].
The WORLD vocoder [18] was also investigated, but some
rudimentary experiments suggests that it is relatively suscep-
tible to voicing decision errors made by fundamental frequency
prediction (f0) models. We decided to use the Harmonic Model
+ Phase Distortion (HMPD) [19] vocoder due the fact that no
voicing or band splitting decision is required, and thereby sim-
plifying the signal representation and modeling. The HMPD
vocoder decomposes a speech signal into the following signals
at constant frame rates:

• f0(ti): a fundamental frequency

• Vi(f): a vocal tract filter response

• µi(t): a short-term mean of the phase distortion (where
the phase distortion is the relative difference between
two frequency components in the frequency domain)

• σi(f) a short-term standard deviation of the phase dis-
tortion

Analysis and synthesis of HMPD is similar to the adaptive Har-
monic Model (aHM) [20], in that the final synthetic signal (ŝ(t))
is generated by a sum of harmonic tracks:

ŝ(t) =

H∑
h=1

âh(t)ejφ̂(t) · χ[hf0(t) < fs/2](t) (4)

where the function χ[hf0(t) < fs/2](t) discards harmonic
content whose frequency is equal to or higher than the Nyquist
frequency. Therefore HMPD is a full band model, like aHM,
but the phase distortion signals (µi(t) and σi(f)) are used to
recover a synthetic relative phase (φ̌(t)) with the same perceived
characteristics as the original one (φ̂(t)) [19] as follows:

ˆPDi,h =WN (µi(hf0(ti)), σi(hf0(ti))) (5)

whereWN (µ, σ) generates values from a wrapped normal
distribution around a mean µ and with a standard deviation σ.
Now (φ̌(t)) can be found as:

θ̂i,h =
h
∆−1 ˆPDi,h (6)

where
h
∆−1 is the cumulative sum and θ̂i,1 = 0. Then

adding the minimum-phase response of the vocal tract filter

φ̌i,h = θ̂i,h + ∠Vi(hf0(ti)) (7)

In practice it has been found that the short-term mean of the
phase distortion (µi(t)) as done in the HMPD analysis [19] does
not add any perceived benefit and therefore it has been omitted
from vocoder and µi set to zero (0) in Equation 5.

3. Voice Building
3.1. Data

Audio books of 50 children’s stories, narrated by a British En-
glish female speaker, together with the text of 40 of the stories
were provided. Part of the task was to source the text of the
10 outstanding books. The duration of all the provided audio
was 06:01:53.18. The audio and text files were provided
in varying formats, all at 44.1 kHz sampling rate, 2 channels,
16 bit encoding. Some of the audio files contained non-speech
sounds (animated sounds of animals, laughter, notifications of
page turning, etc.). Initial sentence level alignments were pro-
vided by Toshiba, where all non-speech sounds were removed
and the text was segmented on what seemed like prosodic
phrase breaks based on punctuation (commas, full stops, colon,
exclamation, question, etc.).

3.2. Pre-processing

All audio was down-mixed to a single channel and then down-
sampled to 16 kHz at 16 bits per sample. A base-line voice
was built with the standard HTS [21] recipe (version 2.2) and
supplied sentence level alignments in order to test the use of the
South African English phone set and pronunciation prediction.

3.2.1. Text

The text was segmented on sentence level in order to fix the is-
sues in the supplied text segmentation (where one utterance with
direct and carrier speech was split into two utterances). Some
of the 10 outstanding books were sourced from electronically
scanned portable document format (PDF) files and required op-
tical character recognition (OCR) software in order to extract
the text. This text was then manually verified in order to elim-
inate errors produced by the OCR software. The final text had
5094 utterances with an average length of 8.8 words per utter-
ance, a minimum of 1 and a maximum of 53 words per utter-
ance.

3.2.2. Utterance level alignments

The given audio was split into page or chapter segments, these
were combined into one file for each book. Utterance level
alignments were then done using the text and combined au-
dio files for each book with the aeneas1 tool, which uses a
dynamic time warping algorithm to force align the audio with
some reference audio. The reference audio that was used was
generated with the base-line voice built with the supplied align-
ments. All 10 outstanding books were manually verified and
corrected due to mismatches of the text and what was read in
the audio.

3.2.3. Pruning silences

Some of the resulting aligned utterances had large preceding
and following silences, which were pruned with the Festvox
[22] tool prune silence. The tool executes a pitch deter-
mination algorithm (pda) and prunes parts of the initial and fi-
nal wave file where it deems there is no speech (it uses pda for
voice activity detection). The pruning was set at 0.2 seconds,
meaning the initial and final silences should not be longer than
that. If shorter, then no pruning is done. At the end we had 5079
utterances, with an pre-pruned duration of 05:44:28.20 and
a pruned duration of 04:39:14.41.

1https://github.com/readbeyond/aeneas/



3.3. Phonetic alignment

We use a forced-alignment process based on HTK in order to
align the audio to the phonetic transcriptions of all the utter-
ances. Speaker-specific triphone acoustic models were trained,
which were then used to align the data. This same process also
provides us with the acoustic phrase breaks (Section 2.4) used
to train our phrasing models.

3.4. Classification and clustering

Using the approach described in Section 2.3, each sentence was
classified and labeled as either direct speech, carrier or narra-
tive. This information was then captured in the HTS labels and
used as features during the HMM training. The corresponding
audio was segmented accordingly. The speech data was then
clustered acoustically. This was performed by first extracting
low-level acoustic features on a frame level and then mapped
to unit level via functionals such as mean, standard deviation
etc. Using the manually selected feature sets in [8], the follow-
ing eight features were extracted: mean of f0, voicing prob-
ability (pv), local jitter, local shimmer and logarithmic HNR;
standard deviation of F0; mean of absolute delta of f0 and pv .
The features were extracted using the opensmile2 tool. The
data was then clustered using a hierarchical k-means clustering
technique. 3 clusters were formed. Due to time constraints, the
adaptation of the average voice model to the individual clusters
was not completed in time. The integration of the adaptation
procedures with Speect took longer than expected and the time
required to adapt the average voice model to multiple clusters
exceeded the time we had left to complete the task.

3.5. Phrase break modeling

The phonetic alignment stage (Section 3.3) outputs silences
found in the read audio. All silences larger than a threshold
(80 ms) were deemed to be acoustic phrase breaks. Our final
set of 5079 utterances had silences in with a mean of 0.283 sec-
onds and a standard deviation of 0.231 seconds. These silences,
which are assumed to be acoustic phrase breaks, together with
POS tags of the words in the utterance were used to train a CRF
model (with the CRFsuite 3) that provided the grammar based
probability of a phrase break (P (bi|Ci) in section 2.4). Next an-
other CRF was trained, using these predicted phrase breaks fea-
tures together with word positional and punctuation features in
order to provide the final phrase break prediction. Table 2 gives
the objective results of the phrase break model for the acoustic
breaks and non-breaks when compared to the audio on a test set
(10% of data).

Table 2: Objective results for phrase break model
Precision Recall F1 score

Non-break 98.04% 98.6% 98.32%
Phrase break 86.33% 81.82% 84.01%

3.6. Simplified SLAM prosody modeling

Every audio file in the corpus was processed to extract f0 values
using the MELodic MOdelisation (MOMEL) algorithm [23].
The mean and standard deviation of the corpus were calculated
from these values. Textgrids were generated with alignment

2http://opensmile.sourceforge.net/
3http://www.chokkan.org/software/crfsuite

in place at all segment levels. Each textgrid had already been
processed by the part-of-speech tagger and the phrase break
model. Each segment of the textgrid was given a simplified
SLAM label. The textgrids were then processed on a phrase,
word and syllable level to extract contextual features for the
part-of-speech tags, phrase breaks and SLAM tags. Positional
features were also extracted. Three CRF models were trained
(with the CRFsuite): a phrase level, a word level and a sylla-
ble level model. Both the phrase and word model results were
used as additional features in the syllable model. This formed a
cascading model which was then used for predictions. At syn-
thesis time, a SLAM label will be assigned to all levels of the
target utterance. Table 3 gives the objective results of the sylla-
ble level SLAM model for the labels up,down and same on a
test set that consists of 10% of the data

Table 3: Objective results for the simplified SLAM syllable
model

precision recall F1
up 77.80% 56.23% 65.28%
down 73.89% 56.27% 63.89%
same 86.04% 94.05% 89.87%

3.7. Training

Training of HMM models was done via custom scripts based
on the standard demonstration script available as part of HTS
(version 2.2). HMPD features were extracted using the stan-
dard COVAREP [24] scripts at a constant 5 ms frame rate. The
harmonic amplitude envelope was compressed with 39 MCEP
coefficients, while the standard deviation of the phase distortion
was modeled with 12 MCEP coefficients. Global variance was
included. The standard linguistic questions were used for model
tying, including: simplified SLAM tags on syllables (previous,
current and next), and the token type (direct, narrative or car-
rier) feature of the word. We did not have syllable stress and
therefore excluded it from the questions.

4. Results
The test sentences were a mixture of news type utterances, se-
mantically unpredictable sentences (SUS), and sections from
audiobooks, ranging from partial sentences, to paragraphs,
chapters and complete books. These test sentences were syn-
thesised and evaluated in a large online perceptual evaluation
experiment. Listeners were grouped into paid participants, vol-
unteers and speech experts. The results presented here are from
all listeners due to space constraints. In the challenge the sub-
mitted entries were evaluated in the following categories:

• similarity to original speaker
• mean opinion score (naturalness),
• word error rate (intelligibility) on SUS, and
• naturalness of paragraph and longer based synthesis,

which included: emotion, intonation, listening effort,
overall impression, pleasantness, speech pauses and
stress.

Our designated system identification letter for the results is ”I”.
System ”A” is natural speech, ”B” is the Festival benchmark
system (a standard unit-selection voice built using the same
method as used in the CSTR entry to Blizzard 2007), system
”C” is the HTS benchmark, system ”D” is a deep neural network
(DNN) benchmark and systems ”E” to ”Q” are participants.



4.1. Similarity to original speaker

Figure 1 gives the perceptual evaluation result for all the listen-
ers for the ”similarity to original speaker” evaluation. From the
pairwise Wilcoxon signed rank tests we can see that our system
is not significantly different (1% confidence level) from systems
C, G, K and N.
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Figure 1: Similarity to original speaker, all listeners

4.2. Mean opinion score

Figure 2 gives the perceptual evaluation result for all the listen-
ers for the mean opinion score (MOS) ”naturalness” evaluation.
Our system is not significantly different from systems C, J, K
and O.
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Figure 2: Mean opinion score (naturalness), all listeners

Figure 3 shows the perceptual evaluation result for all the
listeners for the mean opinion score (MOS) ”overall impres-
sion” of the audiobook paragraphs evaluation. Our system is
not significantly different from systems C, E, J and P.
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Figure 3: Mean opinion score, audiobook paragraphs (overall
impression), all listeners

4.3. Word error rate

Figure 4 shows the perceptual evaluation result for all the listen-
ers for the word error rate of the SUS evaluation. Our system is
not significantly different from systems B, C, E, G, J, K, M, O
and Q.
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Figure 4: Word error rate (intelligibility) , all listeners



5. Discussion and conclusion
Our system suffers from a lack of naturalness and similarity to
the original speaker in comparison to other systems, but intelli-
gibility is comparable to some of the better systems. This trend
was also found in our previous Blizzard Challenge entries. Al-
though the HMPD vocoder improves the overall synthetic qual-
ity, it has inherent limitations in modeling high pitched voices
[19], which is prevalent in all sinusoidal based vocoders. We
also think that we might gain in naturalness by spending future
efforts on DNN-based acoustic modeling. Our phrasing mod-
els worked well and are well suited to data-driven techniques.
We are planning on exploring our simplified SLAM version in
more detail in the future in order to fully understand it’s effects
on synthesised speech, and especially in tonal languages such
as found in South Africa.

6. References
[1] J. A. Louw, “Speect: a multilingual text-to-speech sys-

tem,” in Proceedings of the Nineteenth Annual Symposium
of the Pattern Recognition Association of South Africa,
Cape Town, South Africa, November 2008, pp. 165–168.

[2] J. A. Louw, D. R. Van Niekerk, and G. I. Schlünz, “In-
troducing the Speect speech synthesis platform,” in Bliz-
zard Challenge Workshop 2010, Kyoto, Japan, September
2010.

[3] J. A. Louw, G. I. Schlünz, W. Van der Walt, F. De Wet,
and L. Pretorius, “The Speect text-to-speech system entry
for the Blizzard Challenge 2013,” in Blizzard Challenge
Workshop 2013, Barcelona, Spain, September 2013.

[4] P. Taylor, A. W. Black, and R. Caley, “Heterogeneous re-
lation graphs as a mechanism for representing linguistic
information,” Speech Communication, vol. 33, no. 1, pp.
153–174, 2001.

[5] ——, “The architecture of the Festival speech synthe-
sis system,” in 3rd ESCA Workshop on Speech Synthesis.
Jenolan Caves, Australia: International Speech Commu-
nication Association, 1998, pp. 147–151.

[6] A. W. Black and K. A. Lenzo, “Flite: a small fast run-
time synthesis engine,” in 4th ISCA Tutorial and Research
Workshop (ITRW) on Speech Synthesis, Perthshire, Scot-
land, 2001, pp. 157–162.

[7] D. M. Beazley, “SWIG: An easy to use tool for integrat-
ing scripting languages with C and C++.” in 4th Tcl/Tk
Workshop, Monterey, California, 1996.

[8] F. Eyben, S. Buchholz, and N. Braunschweiler, “Unsuper-
vised clustering of emotion and voice styles for expressive
tts,” in 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2012,
pp. 4009–4012.

[9] J. Yamagishi, T. Kobayashi, M. Tachibana, K. Ogata, and
Y. Nakano, “Model adaptation approach to speech synthe-
sis with diverse voices and styles,” in Acoustics, Speech
and Signal Processing, 2007. ICASSP’07. IEEE Interna-
tional Conference on, vol. 4. IEEE, 2007, pp. IV–1233.

[10] A. Parlikar and A. W. Black, “Data-driven phrasing for
speech synthesis in low-resource languages,” in 2012
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Kyoto, Japan: IEEE, 2012,
pp. 4013–4016.

[11] P. Taylor and A. W. Black, “Assigning phrase breaks from
part-of-speech sequences,” Computer Speech and Lan-
guage, vol. 12, pp. 99–117, 1998.

[12] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey et al.,
“The HTK book,” Cambridge University Engineering De-
partment, vol. 3, p. 175, 2002.

[13] N. Obin, J. Beliao, C. Veaux, and A. Lacheret, “SLAM:
Automatic Stylization and Labelling of Speech Melody,”
in Speech Prosody, Ireland, May 2014, pp. 246–250.
[Online]. Available: http://hal.upmc.fr/hal-00968950

[14] Y. Stylianou, “Applying the harmonic plus noise model
in concatenative speech synthesis,” IEEE Transactions on
Speech and Audio Processing, vol. 9, no. 1, pp. 21–29,
2001.

[15] D. Erro, I. Sainz, E. Navas, and I. Hernaez, “Harmonics
plus noise model based vocoder for statistical parametric
speech synthesis,” IEEE Journal of Selected Topics in Sig-
nal Processing, vol. 8, no. 2, pp. 184–194, 2014.

[16] T. Drugman and Y. Stylianou, “Maximum voiced fre-
quency estimation: Exploiting amplitude and phase spec-
tra,” IEEE Signal Processing Letters, vol. 21, no. 10, pp.
1230–1234, 2014.

[17] J. A. Louw, “A straightforward method for calculat-
ing the voicing cut-off frequency for streaming HNM
TTS,” in Pattern Recognition Association of South Africa
and Robotics and Mechatronics International Conference
(PRASA-RobMech), 2015. Port Elizabeth, South Africa:
IEEE, 2015, pp. 252–257.

[18] M. Morise, F. Yokomori, and K. Ozawa, “World: a
vocoder-based high-quality speech synthesis system for
real-time applications,” IEICE TRANSACTIONS on Infor-
mation and Systems, vol. E99-D, no. 7, pp. 1877–1884,
2016.

[19] G. Degottex and D. Erro, “A uniform phase representation
for the harmonic model in speech synthesis applications,”
EURASIP Journal on Audio, Speech, and Music Process-
ing, vol. 2014, no. 1, p. 1, 2014.

[20] G. Degottex and Y. Stylianou, “Analysis and synthesis
of speech using an adaptive full-band harmonic model,”
IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 21, no. 10, pp. 2085–2095, 2013.

[21] H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. W.
Black, and K. Tokuda, “The HMM-based speech synthe-
sis system (HTS) version 2.0.” in The 6th International
Workshop on Speech Synthesis. Bonn, Germany: Cite-
seer, 2007, pp. 294–299.

[22] G. K. Anumanchipalli, K. Prahallad, and A. W. Black,
“Festvox: Tools for creation and analyses of large speech
corpora,” in Workshop on Very Large Scale Phonetics Re-
search, UPenn, Philadelphia, 2011.

[23] D. Hirst, A. Di Cristo, and R. Espesser, “Levels of repre-
sentation and levels of analysis for the description of in-
tonation systems,” in Prosody: Theory and experiment.
Springer, 2000, pp. 51–87.

[24] G. Degottex, J. Kane, T. Drugman, T. Raitio, and
S. Scherer, “Covarep- a collaborative voice analysis repos-
itory for speech technologies,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014, pp. 960–964.


