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Abstract
We describe the synthetic voices entered into the 2013 Blizzard
Challenge by the SIMPLE4ALL consortium. The 2013 Bliz-
zard Challenge presents an opportunity to test and benchmark
some of the tools we have been developing to address two prob-
lems of interest: 1) how best to learn from plentiful ‘found’
data, and 2) how to produce systems in arbitrary new languages
with minimal annotated data and language-specific expertise on
the part of the system builders. We here explain how our tools
were used to address these problems on the different tasks of
the challenge, and provide some discussion of the evaluation
results.
Index Terms: statistical parametric speech synthesis, speech
alignment, speech segmentation, style diarisation, unsupervised
learning, vector space model, audiobook data, glottal inverse
filtering, glottal flow pulse library

1. Introduction
This paper describes the synthetic voices entered into the
2013 Blizzard Challenge by the SIMPLE4ALL consortium.
SIMPLE4ALL is a European speech synthesis project focused
on creating speech synthesis technology that learns from data
with little or no expert supervision.1 The 2013 Blizzard Chal-
lenge provides a good opportunity to test and benchmark some
of the techniques we have been developing within the project.
Two problems of central importance for SIMPLE4ALL are
1) how best to learn from plentiful ‘found’ data, and 2) how
to produce systems in arbitrary new languages with mini-
mal annotated data and language-specific expertise on the part
of the system builders. We here explain how the differ-
ent tasks of the challenge relate to the problems of interest,
and give an overview of how we applied four parts of the
SIMPLE4ALL toolkit to the tasks.

Obtaining and transcribing the speech data for training a
corpus-based text-to-speech (TTS) system in a new language
requires considerable time and expert knowledge. Typically,
this speech data is collected during a specially-arranged record-
ing session, for which a recording script has to be prepared,
a suitable studio must be found, a voice talent must be re-
cruited and speech recording must be carefully supervised.
SIMPLE4ALL aims to ease the building of new voices by de-
veloping and distributing tools which allow the reuse of speech
data produced for other purposes. A prime example of such
‘found’ data is freely available audiobook recordings which

1www.simple4all.org/

have been released into the public domain. In [1] we presented
a part of our toolkit for segmenting and aligning such record-
ings, allowing us to circumvent the need to engineer purpose-
recorded speech corpora where existing recordings are avail-
able. Task EH1 of the challenge lets us test tools addressing
this problem, as it involves building a voice from a very large
set of audiobook data which is provided as approximately 300
hours of chapter-sized mp3 files.

As well as obtaining a segmentation and alignment for
audiobook data, it is also important to deal with the het-
erogeneity of such data. To this end, another part of the
SIMPLE4ALL toolkit was used to provide diarisation of the au-
tomatically obtained corpora. If audio from radio broadcasts are
to be used for training a TTS system, for example, it is crucial to
diarise audio into speech and non-speech (e.g. music, applause,
laughter). When pure speech has been obtained, it is further
necessary to diarise it into separate speakers, and it may also
be desirable to diarise a single speaker’s speech into different
emotions or speaking styles [2]. Ultimately the goal of the lat-
ter would be to build a synthesiser capable of producing speech
in a variety of styles. A more short-term approach is to exclude
more unusual speaking styles to produce a subset of relatively
homogeneous and neutral speech. This gives a set of training
data which is as much like a conventional TTS database as pos-
sible, but which doesn’t incur the associated costs. This is the
approach taken here.

A third part of the SIMPLE4ALL toolkit used for our Bliz-
zard Challenge entry is designed to enable the construction of
systems in languages where we have access to little or no lin-
guistic expertise or expert-annotated data. We think it is valu-
able for speech technology to venture beyond the handful of
the world’s languages where resources such as text normalis-
ers, lexicons and part-of-speech taggers already exist. Thus,
part of the SIMPLE4ALL toolkit includes tools for construct-
ing TTS front-ends which make as few implicit assumptions
about the target language as possible, and which can be con-
figured with minimal effort and expert knowledge to suit arbi-
trary new target languages. To this end, the modules rely on
resources which are intended to be universal, such as the Uni-
code character database, and employ unsupervised learning so
that unlabelled text resources can be exploited without the need
for costly annotation. Task IH1 lets us test tools addressing this
problem, as it involves building voices for four Indian languages
(Hindi, Bengali, Kannada and Tamil) for which the consortium
members have no language-specific expertise or resources.

The fourth and final part of the SIMPLE4ALL toolkit used
for our Blizzard Challenge entry is an implementation of new



speech signal models capable of modelling a large variety of
speaking styles and vocal emotions [3].

We note that an initial public version of tools for this whole
pipeline of tools is due to be released in November 2013.

2. System Description
2.1. Data preparation

As already mentioned, the training data for task EH1 of the chal-
lenge was provided without a sentence-level speech segmenta-
tion and text alignment. Therefore one of the sub-tasks was
to obtain the correct alignment, prior to building the synthetic
voices. Our previous work on automatic alignment of speech
with imperfect transcripts [4, 5, 6] has developed tools to per-
form the alignment without the use of high-level language ex-
pertise or existing acoustic models. The method involves two
major steps: 1) a sentence-level segmentation of the speech
data, and 2) automatic alignment of speech and text at sentence-
level. Both steps are lightly supervised and require only a mini-
mum amount of manually labelled data, also called initial train-
ing data. The following paragraphs describe them in more de-
tail.

Step 1. Speech segmentation is performed using a 16 Gaus-
sian Mixture Model (GMM)-based voice activity detection al-
gorithm [6]. Two GMMs are trained, one for silence and one for
speech, from 10 minutes of manually-labelled data, in which the
inter-sentence silences are marked. Feature vectors consist of
energy, 12 dimensional MFCCs, their deltas and the number of
zero crossings. After training the GMMs, for each frame within
the manually-labelled data, we compute the the log likelihood
ratio, followed by a median filter smoothing. This process also
detects short intra-sentence silences. In order to discriminate
between inter- and intra- sentence silence frames, two Gaussian
probability distribution functions are fitted onto the histogram
of silence durations. Their intersection represents the threshold
for sentence boundary silence duration. The GMMs are then
run on the entire speech resource. Results showed over 96%
accuracy in sentence boundary detection.

Step 2. The speech alignment step starts from the same 10
minutes of initial training data, which is now segmented and
needs to be orthographically transcribed. A first set of poor ini-
tial grapheme-level acoustic models is built from it. The models
are then used to recognise the entire speech resource with the
help of a highly restricted word network built from the full text
transcript (see [4] for more details). To determine the correctly
recognised utterances, the recognition is run over the speech
data with various degrees of freedom within the word networks,
and the obtained acoustic scores are compared. Confident data
is then used to re-train the acoustic models, and the process
repeats. A final step in the alignment is the re-estimation of
the acoustic models using tri-graphemes, and this increases the
aligned data by over 40% relative. However, for short speech
resources, this step might be unfavourable, as the number of tri-
graphemes is too large to obtain satisfactory statistics for them.
Previous results obtained with an English audiobook showed an
average 75% confident data with a 7% SER and 0.5% WER [5].

For the Blizzard Challenge task EH1 , each audiobook was
segmented and aligned individually, aligned percentages being
similar to our previous results.

2.2. Data selection

The speaker diarization system described in [7] was used to
cluster the segmented utterances obtained as described in sec-

tion 2.1 for a single audiobook. As we are clustering the speech
of a single speaker, the result is a set of ‘pseudo-speakers’, each
corresponding to some automatically detected speaking style as
in [2]. A difference in the current case is that we seek only
a single cluster of neutral style speech to use, and discard the
other clusters. 12 such clusters were produced by an iterative
process of speaker segmentation and agglomerative clustering
of segments. For each sentence, the system output the dom-
inant ‘speaker’ of the sentence and the purity of the sentence
(fraction of the sentence spoken by the dominant speaker). A
single cluster accounted for 90% of the sentences processed –
informal listening suggested that this corresponded well with
the speaker’s neutral style of reading. Taking only the com-
pletely pure utterances reduced this to 89%.

For the EH1 voice acoustic models, a 5 hour subset of this
pure neutral data was selected. Note however that the whole of
the data for which a confident alignment was obtained (section
2.1) was used for the pause prediction model (see section 2.4).

2.3. Text processing

The tools used for building TTS front-ends for entries to all
parts of the challenge are based on ideas outlined in [8], applied
to Spanish TTS in [9], and to 14 different languages in [10].
We summarise the tools here, drawing heavily on descriptions
given in those previous publications.

Input to the system consists of the audio of utterances to-
gether with their text transcription. For the EH1 voice, these
utterances made up 5 hours of the neutral speech extracted as
described in Section 2.2. For each of the Indian languages of
task IH1, 950 of the available 1000 sentences and their plain
orthography UTF-8 transcriptions were used as input; 50 sen-
tences were set aside for use as an internal development set.

As well as the training speech data and its transcripts, our
tools exploit the large amount of unannotated text data which
is available for many languages on the web. For the task IH1
voices, this consisted of approximately 13.4, 2.2, 4.4 and 6.4
million tokens of text for Hindi, Bengali, Kannada and Tamil,
respectively, which we obtained from Wikipedia. For the En-
glish voice for Task EH1, we used only the transcripts of the
full audiobook training corpus only as we wanted to experiment
with using only in-domain data. For all languages, these unan-
notated text data were used for construction of the word- and
letter-representations described below.

Text which is input to the system is assumed to be UTF-8
encoded: given UTF-8 text, text processing is fully automatic
and makes use of a theoretically universal resource: the Uni-
code database. Unicode character properties are used to to-
kenise the text and characterise tokens as words, whitespace,
punctuation etc. Our front-ends currently expect text without
abbreviations, numerals, and symbols (e.g. for currency) which
require expansion; however, the lightly supervised learning of
modules to expand such non-standard words is an active topic
of research [11], and we hope to integrate such modules into our
toolkit in the near future.

A letter-based approach is used, in which the names of let-
ters are used directly as the names of speech modelling units (in
place of the phonemes of a conventional front-end). This has
given good results for languages with transparent alphabetic or-
thographies such as Romanian, Spanish and Finnish, and can
give acceptable results even for languages with less transpar-
ent orthographies, such as English [8, 12, 13, 14]. We decided
to submit letter-based systems for both the EH1 and IH1 tasks,
even though high-quality lexicons are available for English. Al-



though the complicated letter-to-sound relations of English or-
thography mean that we expect this to severely degrade synthe-
sis quality, we wished to make use of the opportunity presented
by the Blizzard Challenge to evaluate this naive approach using
many listeners against state-of-the-art systems. In this way, we
have a useful benchmark against which to compare the results
of ongoing attempts to tackle the same problem in a less naive
way.

The induced front-ends make use of no expert-specified cat-
egories of letter and word, such as phonetic categories (vowel,
nasal, approximant, etc.) and part of speech categories (noun,
verb, adjective, etc.). Instead, features that are designed to stand
in for such expert knowledge but which are derived fully auto-
matically from the distributional analysis of unannotated text
(speech transcriptions and Wikipedia text) are used. The distri-
butional analysis is conducted via vector space models (VSMs);
the VSM was originally applied to the characterisation of doc-
uments for purposes of Information Retrieval. VSMs are ap-
plied to TTS in [8], where models are built at various levels
of analysis (letter, word and utterance) from large bodies of
unlabelled text. To build these models, co-occurrence statis-
tics are gathered in matrix form to produce high-dimensional
representations of the distributional behaviour of e.g. word and
letter types in the corpus. Lower-dimensional representations
are obtained by approximately factorising the matrix of raw co-
occurrence counts by the application of slim singular value de-
composition. This distributional analysis places textual objects
in a continuous-valued space, which is then partitioned by de-
cision tree questions during the training of TTS system com-
ponents such as acoustic models for synthesis or decision trees
for pause prediction. For the present voices, a VSM of letters
was constructed by producing a matrix of counts of immedi-
ate left and right co-occurrences of each letter type, and from
this matrix a 5-dimensional space was produced to characterise
letters. Token co-occurrence was counted with the nearest left
and right neighbour tokens (excluding whitespace tokens); co-
occurrence was counted with the most frequent 250 tokens in
the corpus. A 20-dimensional space was produced to charac-
terise word tokens.

2.4. Pause Prediction

Phrase-break prediction is an essential part in text-to-speech
synthesis because it determines the rhythm, as well as promi-
nence in the output synthetic speech. As previously stated, our
system tries to avoid supervised and language-dependent mod-
ules. Hence, our phrase-break prediction step is also lightly
supervised, and we treat silences detected from the acoustics as
surrogate phrase-breaks. We exploit the large amount of speech
data made available for task EH1, and extract a training set from
the forced alignment of the audio and its corresponding ortho-
graphic transcripts obtained in the alignment step (see Section
2.1). (The same approach was used for the IH1 voices, except in
those cases the training corpus was much smaller and a sentence
segmentation was already available.) To discriminate between
the short inter-word pauses and pauses which might signal ac-
tual phrase-breaks, we plotted the histogram of all the silence
segments within the available data. This lead to a separation
threshold of 200 ms. Silences below this threshold were dis-
carded and added to the no-pause (NP) set. A list of all the
consecutive pairs of words from the text and the length, and
existence of a phrase break constitutes our training data. This
method works under the assumption that the test data will be
part of the same domain as the training one (i.e. audiobooks),

and the phrase break durations would be similar, which also
means that the method is corpus-dependent.

But, as the surface form of the words does not inherently
contain enough information to predict the phrase breaks, we
rely on the vector representations of words mentioned in sec-
tion 2.3. The vectors for each pair of consecutive words from
the training data, along with their pause indicator constitute the
input for a classification and regression tree. Results showed
an overall 0.9 F-measure, but only an 0.4 F-measure for pause
instances (P). This is mostly due to the unbalanced training data
set (i.e. there are more NP word pairs than P). Even when the
set was artificially built from equal amounts of and NP pairs,
the results remained similar. This might be caused by the VSMs
not being able to capture the essential features required for the
pause prediction, and hence a more elaborate set of features
would be beneficial in future work.

Punctuation is also an important pause indicator, and so we
included the punctuation marks as word-pair constituents. This
lead to an increase of 0.1 in the F-measure of the P class. Still
the results are below expectation, but we estimate that they are
caused by the poor alignment of speech with its orthographic
transcripts, especially for English which is known to have a high
letter-to-sound complexity.

To estimate the phrase breaks in the testing data, we con-
verted the sentences into word pairs, extracted their correspond-
ing vectors and predicted the P/NP class with the previously
trained CART.

2.5. Acoustic Modelling

As mentioned previously, a five-hour subset of the available
training corpus for EH1 was used to train acoustic models. The
inconsistent recording conditions and small amounts of training
data for the IH1 tasks meant that extra robustness for acoustic
parameterization and training was required. The 4 IH1 voices
were each built in an identical fashion, except that half of the
Bengali training data was discarded due to being recorded in
excessively reverberant conditions. Various other inconsisten-
cies were present too. Style-adaptive training and the use of
extra contextual labels were considered for distinguishing these
different recording conditions, but our tools for unsupervised
recording quality classification are not yet ready.

2.5.1. Parameterisation

For the EH1 voice, the training data were parameterised using
STRAIGHT, almost as described in [15]. The only difference is
that instead of the committee of different pitch-trackers used in
the earlier work, pitch tracks obtained with GlottHMM (using
a glottal source signal estimated by glottal inverse filtering [3])
were used for their greater accuracy.

For the IH1 voices, full GlottHMM parameterisation [3]
was used after initial denoising of the training speech. 24 vo-
cal tract LSF coefficients and 10 voice source LSF coefficients
were extracted as well as harmonic-to-noise ratio with 5 bands,
energy and F0. Pulse libraries [16] were extracted from 10 ut-
terances for each voice.

Some alterations to the parameterization scheme described
in [3] were made to increase robustness. First, the iterative
adaptive inverse filtering method was replaced with direct in-
verse filtering using a pre-emphasis filter only. Second, the
pre-emphasis filter was added to unvoiced analysis, to ensure
continuous LSF trajectories across voicing boundaries, thus re-
ducing the audible distortion of voicing errors.



Notably, we did not use the vocal tract LSF parameters di-
rectly in the training, but instead converted the parameters to
mel-cepstral representation via LPC spectrum. As mel-cepstral
coefficients are decorrelated, focus on perceptually relevant fre-
quencies and provide smooth trajectories, they might be more
suitable than LSFs for HMM training, especially on difficult
material such as the current challenge. Further investigation on
this topic would be needed to verify this.

2.5.2. Training and synthesis

A rich set of contexts was created using the results of the anal-
ysis described in section 2.3 for each letter token in the training
data for all languages. Features used include the identity of the
letter and the identities of its neighbours within a window of
given length. A 5-letter window was used for the IH1 voices,
and a 9-letter window for the EH1 voice. Some informal exper-
iments suggested this to be an appropriate size for the 5 hour
subset of the EH1 data we used. Additional features were the
VSM values of each letter in the window, and the distance from
and until a word boundary, pause, and utterance boundary.

For the EH1 voice, speaker-dependent acoustic models
were built from the parameterised speech data and labelling us-
ing the speaker-dependent model-building recipe described in
[17].

For the IH1 voices, the HMM models were trained with
the standard HTS 2.0 [18] recipe, modified for additional Glott-
HMM streams, but using three iterations of decision tree clus-
tering instead of two. MGE training was also applied. Parame-
ter generation was performed considering global variance, with
stream-dependent thresholds. Generated mel-cepstral coeffi-
cients were converted back to the LSF form for stability check-
ing and vocoding purposes. Excitation was generated using the
PCA-mean pulse approach [19].

Informal listening by the authors and feedback from several
native speakers suggested that the denoised GlottHMM version
performed better than previous SIMPLE4ALL voices built on
the same data using the STRAIGHT vocoder, but detailed anal-
ysis of the exact reasons for this improvement remains to be
done.

3. Results

The identifier for our system in the published results is P.

On Task EH1 ours was consistently the worst-performing
system of all entries. On the intelligibility sections of the evalu-
ation, there was a c.10% gap in WERs between our system and
the second worst performing one. This gap was higher among
the paid subset of listeners, and lower among online volunteers
and speech expert listeners, where it dropped to c.5–6%.

Performance relative to the other systems in the IH1 tasks
was much better. For the speaker similarity and naturalness sec-
tions of the evaluation for all 4 languages, our system tends to
score somewhere in the middle of all TTS systems. The in-
telligibility results published for Hindi and Kannada follow a
similar pattern. In the Hindi test, 4 TTS systems achieved lower
WERs than ours, 1 was worse, and 1 scored within 1% WER
of our system; in the paid listener subset, our system achieves
precisely the middle rank in the Hindi intelligibility results. In
both listener group sections of the Kannada intelligibility test,
our system also achieves precisely the middle rank.

4. Conclusions
The poor performance of our system in EH1 was anticipated due
to the difficulty of TTS from the surface orthographic forms of
English words, and to the high level of expertise that has been
accumulated for doing TTS in English where there is no self-
imposed limit on the amount of target-language expertise that
can be used in a system. However, we wished to know exactly
how much the lack of a lexicon would set us back in an exten-
sive evaluation with many listeners. Furthermore, these results
are envisaged as being useful for on-going improvements to our
system, where light supervision and unsupervised lexicon in-
duction techniques are exploited. Because Blizzard stimuli are
released after the challenge, it is possible to evaluate improved
systems by re-running the evaluation locally on a smaller scale,
using a subset of ‘landmark’ systems from the challenge which
allow new results for improved systems to be placed among ex-
isting Blizzard results. Having our own baseline among the
original results is useful for sanity-checking when projecting
results for new systems into the space of existing results.

We regard the middling performance of our system on the
IH1 tasks as a success, given that the system makes no use of
expert script knowledge, while we assume that other systems
probably all make use of at least the phonetic annotation dis-
tributed for the challenge. This is the first formal evaluation of
our letter-based front-end as applied to a non-alphabetic script:
we regard its reasonable performance on the four alphasyllabic
scripts of IH1 as a validation for the unsupervised approach for
our main target domain of under-resourced languages.
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