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Abstract 
Lessac Technologies has developed a technology for 
concatenated speech synthesis based on a novel approach for 
describing speech in which expressivity, voice quality, and 
speaking style are fundamental. The main aspect of our system is 
that instead of traditional phonetic symbols, we use a much more 
fine-grained and richer set of entities called Lessemes to describe 
speech and to label units, which allow a richer and more precise 
characterization of speech sounds. The front-end portion of our 
synthesizer translates plain input text into a sequence of these 
units by syntactic parsing and applying a set of rules developed 
from expertise. We use a Bayesian method to obtain a particular 
trainable mapping from linguistic and prosodic features encoded 
in the Lessemes to a trajectory in the acoustic parameter space. 
Unit selection consists of selecting the best candidate units from a 
data base to match them to the target trajectory, while minimizing 
discontinuities between them.  

 
Index Terms: Speech Synthesis, Blizzard Challenge, Lesseme. 

1. Introduction 
This is our third entry to the Blizzard Challenge. For 2012 , the 
Blizzard Challenge voice corpus was based on a set of four Mark 
Twain audio book recordings from librivox.org (A Tramp 
Abroad; Life on the Mississippi; The Adventures of Tom 
Sawyer; and The Man That Corrupted Hadleyburg, and Other 
Stories), all read by John Greenman. As part of the Challenge, 
Toshiba Research Europe provided each Blizzard participant with 
automatically segmented and aligned data with a confidence 
factor for the alignment for each prompt. The original recording 
length in mp3 format for all four books combined runs to just 
over 50 hours.  

For Blizzard Challenge 2011, Lessac had supplied the 
“Nancy” voice corpus to each participant as the basis of the 
challenge. For Blizzard Challenge 2012, we used similar voice 
building techniques to build the “Greenman” voice. Except for 
the approach we took to selecting which portions of the 
“Greenman” voice corpus to use in building our voice, we used 
our current standard approach to building a voice for a Lessac 
TTS, and we used our standard approach to synthesize the test 
data. The major advances between 2011 and 2012 have been 
further improvements in (1) pitch marking based on a neural 
network, and (2) our hierarchical mixtures of experts approach to 
predict desired acoustic parameters.  

Section 2 describes the approach we took to selecting 
the portions of the voice corpus to use in our synthesizer. Section 
3 provides a description of our text-to-speech system. Section 4 
explains the Lessac process of building the “Greenman” voice. In 
the first half of Section 4, we explain the approach we used in 
developing the pre-cursor elements of building a synthesizer, 
such as prompts, pitch-marks, and phonetic labels. In the second 
half of Section 4, we outline how we used the data available in 
the “Greenman” voice corpus to build our complete Lessac text-

to-speech synthesis system. Results from the listening test and 
related discussion can be found in Section 5.  

 

2. Approach to Corpus Selection 
As narrated, the four Mark Twain books took John Greenman 
more than 50 hours to read aloud; however, in our submitted 
voice, we used only 17.1 hours of speech, 5,152 prompts from 
“The Man that Corrupted Hadleyburg, and Other Stories”, and 
4,935 prompts from “A Tramp Abroad” All of these prompts 
were at the 100% prompt alignment level based on Toshiba’s 
automated alignment. 

Lessac has built a half dozen TTS voices from similar 
audio book data. We use a semi-automated tool we have 
developed to segment the voice recordings into sentences or 
prompts. The user listens to the voice recordings while 
simultaneously being presented with the text, on a sentence by 
sentence basis, and then repeatedly presses a key as he hears the 
end of each sentence. Since this cannot be done entirely 
accurately the first time through, this is followed with a second 
clean-up tool where the user is presented with a small amount of 
wave data (both graphically and audibly), and he can add, move 
or delete each sentence segmentation break. However, in order to 
get clean data, it requires listening to the equivalent of the entire 
recording twice. Since we did not want to invest more than 100 
additional hours to get cleanly segmented data, we decided to use 
the Toshiba automated segmentation. 

We analyzed the Toshiba segmentation by listening to a 
number of examples, and found that only the prompt 
segmentation with 100% confidence level was accurate enough to 
use, so we eliminated all portions of the provided voice corpus 
that did not have a 100% confidence level. We also eliminated 
prompts with foreign words.  

We built a voice from the nearly 30 remaining hours of 
the voice corpus that Toshiba had segmented at a 100% 
confidence level using our standard automated voice-building 
approach, and submitted this voice as our Blizzard demonstration 
voice in 2011. However, we were concerned that this 
demonstration voice had a number of undesirable characteristics.  

Upon further exploration, we discovered that “Life on 
the Mississippi” was recorded with something that sounds like a 
fan noise in the background. We used signal processing to 
eliminate this background noise. While we could perceptually 
eliminate the fan noise, concatenated joins between units drawn 
from this book joined to units drawn from other books were too 
often jarring. We also eliminated Tom Sawyer because of the 
extensive use of dialect, which was not very well handled by our 
dictionary; we did not want to invest the time to expand our 
dictionary to encompass all of the eccentric dialectical spellings 
used in Tom Sawyer. 

 

3. Lessac Technologies Text-to-Speech System 
Similar to other systems, Lessac Technologies text-to-speech 
system consists of two main components: the front-end, which 
takes plain text as input and outputs a sequence of graphic 
symbols, and the back-end, which takes the graphic symbols as 
input to produce synthesized speech as output. In what follows, 



we briefly discuss the properties that distinguish our system from 
others and, we believe, play an important role in producing 
expressive synthesized speech.  

 
3.1 Use of Lessemes 

Successful production of natural sounding synthesized 
speech requires developing a sufficiently accurate symbolic set of 
sound representations that can be derived from the input text, and 
that relate the input text to be pronounced with the corresponding 
synthesized speech utterances that are heard by the listener. 
Rather than adopting traditional symbolic representations, such as 
IPA, SAMPA, or ARPAbet, Lessac Technologies has derived an 
extended set of symbolic representations called Lessemes from 
the phonosensory symbol set for expressive speech as conceived 
by Arthur Lessac [1]. The Lesseme system for annotating text 
explicitly captures the musicality of speech, and from the start 
avoids the artificial separation of prosodic and linguistic features 
of speech.  

In their basic form and meaning, Lessemes are 
symbolic representations that carry in their base form segmental 
information just like traditional symbolic representations. To be 
able to describe speech more accurately and to include in the 
symbol set information that is not carried by a typical phonetic 
symbol, each base Lesseme can be sub-typed into several more 
specific symbols which then represent phonetic information 
found in traditional phonetic symbols plus descriptors for co-
articulation and suprasegmental information. Acoustic data 
demonstrate different properties of a set of Lessemes which are 
normally collapsed under one phonetic label in other systems [2]. 

For General American English, with the present 
Lesseme specification, there can be as many as 1,500 different 
Lessemes. Compared to other sets of representations which 
usually contain about 50 symbols, Lessemes allow more fine-
grained distinction of sounds. Units of the same type share 
closely similar acoustic properties. By having supra-segmental 
information directly encoded in Lessemes, we believe our system 
can target available units for concatenation better than a system 
with a relatively impoverished intonation annotation scheme. 
This should be useful especially when trying to produce 
expressive speech from a very large database. 

 
3.2. Front-end with extensive linguistic knowledge 

The front-end which derives Lessemes from plain text 
input is a rules-based system. The rules are based on expert 
linguistic knowledge from a wide variety of fields including 
phonetics, phonology, morphology, syntax, light semantics, and 
discourse. Simplistically, the Lessac front-end labels text, 
building from, at the lowest level, letters, spaces and punctuation 
marks. These letters, spaces and punctuation marks are 
interpreted by the front-end, and assembled as syllables, words, 
phrases, sentences, and paragraphs to be spoken, along with 
context-aware labeling for appropriate co-articulations, 
intonation, inflection, and prosodic breaks. 

First, the input text is processed by a syntactic parser 
which generates the most likely syntactic tree for each sentence, 
and tags words with part-of-speech (POS) information. In the 
next step, words are transcribed by use of a pronunciation 
dictionary into base Lessemes accompanied by lexical stress. 
Homograph disambiguation based on POS tags takes place at this 
step. Subsequent processing steps modify the base Lessemes by 
making successive decisions based on the overall phrase and 
sentence structure. In particular, prosodic breaks are inserted in 
meaningful places by taking into consideration factors such as 
punctuation, phrase length, syntactic constituency, and balance. 
In most phrases, an operative word is marked which carries the 

highest pitch prominence within the phrase. In addition, 
Lessemes are assigned inflection profiles and one of two degrees 
of emphasis. Context-based co-articulations across word 
boundaries are also captured. The result is a full Lesseme for each 
sound which encodes expressive intonational content in addition 
to the segmental information found in traditional phonetic 
symbols.  

The front-end process is able to develop a complete 
Lesseme label stream with plain normally punctuated text as the 
sole input. This Lesseme stream is delivered to the signal 
processing back-end. 

 
3.3. Voice database construction 

In addition to the machine readable form used as the 
input to the signal processing back-end, Lessemes are also used in 
creating new voices, namely to automatically generate a human 
readable graphic output stream which can be thought of as 
annotated text plus a musical score, as illustrated in figure 1. 

 

 
Figure 1: Lessac Technologies annotated text 

 
In the annotation, vowel orthographic forms are 

designated with Arthur Lessac’s phonosensory symbols. 
Consonant orthographic forms are marked with information 
indicating whether the consonant is sustainable (double 
underlined) or percussive, i.e. pronounced with a brief contact 
within the mouth (single underlined), as well as how the 
consonant is linked to the next sound in connected speech. The 
musical score on top of the orthographic forms depicts notes 
which represent the intonation pattern that a person with 
sufficient voice training can follow. Each syllable corresponds to 
a note. Higher notes are pronounced with higher pitch. Large 
notes define stressed syllables while small notes refer to 
unstressed syllables. Some notes are further specified with an 
inflection, which reflects a particular shape of pitch movement 
within the syllable. 

During the voice database construction, the text to-be-
recorded is first processed by the front-end, yielding the stream of 
Lessemes. In building a full Lessac voice, the resulting stream is 
then transformed into a human readable form, as seen in figure 1, 
which we use as the combined script and score for the trained 
voice talent during the recordings. The way the voice talent 
records the prompts is controlled by the annotated text and 
musical score. The recordings of the prompts are then segmented 
and labeled with the same Lessemes that underlie the script and 
score that the voice talent followed. The fact that the same 
Lessemes are output for the voice talent script as well as the 
labeling of the database creates a direct link between each speech 
snippet and its Lesseme label, thus a high degree of 
correspondence between the symbols and the sounds as actually 
recorded by the voice talent.  

However, for Lessac TTS voices constructed from 
audio book data, such as the “Greenman” voice, such a high 
degree of symbol-to-sound correspondence is not guaranteed. 
Using our current voice-building techniques, unless the voice 
building process includes a labor intensive manual notation 
process, the symbol-to-sound correspondence reflects only the 
expert knowledge contained in our front-end. Our front-end 



prosody represents an idealized “reportorial” prosody, which 
although relatively accurate for most speakers, is only one of 
many speaking styles that a voice actor could use to read the text.  

We make use of this correspondence in the unit 
selection process by evaluating units in the data base according to 
the context dependent linguistic and prosodic features, in order to 
preselect a subset of unit candidates, which are then evaluated by 
the model described in the following.  

 
3.4. Hierarchical Mixture of Experts for mapping 
linguistic features to acoustic parameters  

To enhance methods for target cost calculation and unit 
selection, we apply the Hierarchical Mixture of Experts (HME) 
model [3] [4] to learn the parameters of a statistical model of the 
relationship between the Lesseme representation of the input text 
and the ideal acoustic observables in the recordings.  

A functional diagram of the HME model is shown in 
figure 2.  

 
Figure 2:  Hierarchical Mixture of Experts model. 

(E: experts, G: gates, x: input, y: output) 
 
The HME model applied to the problem of mapping 

prosodic features to acoustic observables makes use of the 
interpretation of the model as a parameterized mixture of 
Gaussians. Each expert in the model represents one multi-
dimensional normal distribution with a variable expectation 
vector that depends on the input x. The parameters for each 
expert also include a full covariance matrix that is estimated and 
updated during the training. Each block of experts in a group or 
clique (Figure 2 shows 3 experts in each of 2 cliques) together 
with a gating network represent one mixture of Gaussians 
whereby the mixture coefficients are computed in the gates as a 
function of the input. Multiple groups of experts can be combined 
by another gate in a similar way. The complete network 
represents a mixture of Gaussians whose parameters are trained 
from pairs of known input and output. During the learning 
process, the parameters in the experts and gates are adjusted so 
that, for a given known input x, the probability of obtaining the 
desired known output y is maximized over all available data. 

In our application of the HME model, the input x 
includes the linguistic and prosodic features and the output y are 
acoustic observables, which include MFCC's, F0, duration, and 
intensity, mostly the same type of parameters used in database 
segmentation, see 4.3 below. The model is applied and trained as 
a recurrent system, which means that the predictions of acoustic 
observables, y[n], for one sound at time index n are included in 
the input x[n+1] for the prediction of the next y[n+1].  

We use supervised learning with the HME model to 
map linguistic feature sequences to a trajectory in the acoustic 
parameter space, which is represented by via points and for some 
of the parameters their velocity or rate of change. The structure of 
the model is shown in figure 3. The system steps through a 
sequence of Lessemes and predicts for each Lesseme the vector 
of acoustic parameters that specify the unit, whereby the input to 
the model consists of the feature information of the previous, the 
current and the next two Lessemes. Further, by feeding back the 
previously predicted acoustic parameter vectors as input to the 
model, the model becomes partially auto-regressive. This 
facilitates the learning task because the model only has to learn to 
predict the current acoustic vector conditioned on the last two 
acoustic vectors and the input linguistic features. Learning 
proceeds in two phases. Initially, the looped-back input to the 
model consists of the actual acoustic vectors until the model 
begins to converge. Then, training is continued by having the 
predictions for the last two time slots become inputs for the 
prediction of the current time slot. Learning then proceeds by 
repeatedly processing a large number of sentences in the 
database, until the error variance cannot be lowered further.  

 

 
Figure 3: Recurrent and partially auto-regressive prediction of 
intonation contour and other acoustic targets by HME 

 
During the target cost calculation process, we compute 

the cost as the distance of the acoustic parameters of a candidate 
unit from the ideal trajectory, which is in turn directly predicted 
from the linguistic feature variables. This distance measure makes 
use of the predicted mixture covariance matrix which is obtained 
by combining the experts' covariances according to the gating 
weights, (see Figure 2). To reduce processing time, we reduce the 
number of candidates first by applying a rapid search with binary 
patterns generated from some of the features, and then compute 
the exact target cost for a smaller subset of close candidates. 
Since the HME provides the parameters of a probability density 
in the acoustic parameter space, we compute for the remaining 
candidates their probability under this distribution and use as 
target cost a penalty that is proportional to the negative logarithm 
of the candidates' probability.  

Using the Lesseme representation of speech sounds, the 
output of the front-end results in a large number of features, 
which is augmented further by bundling neighboring features as 
shown in figure 3. The HME model overcomes the sparsity 
problem in the acoustic database by mapping the Lesseme 
features and context onto the acoustic parameter space as a target 
trajectory. At the same time it automatically provides a variable 
metric near the target trajectory, against which the candidates in 
the data base are matched during unit-selection.  



4. Building the 'Greenman' Voice 
Unlike in Blizzard Challenge 2011, where all of the other 
Blizzard Challenge entrants were using a voice corpus supplied 
by Lessac, for 2012, we had to build a new voice, and did not 
have the advantage of being able to use one of our already 
existing TTS voices. The following briefly describes the steps 
that were taken to create the “Greenman” voice. 

 
4.1. Transcription to Lessemes 

Lessac Technologies has developed an automated rules 
based method more fully described in our Blizzard Challenge 
Workshop 2011 paper that allows us to automatically generate the 
Lesseme sequence from arbitrary text. This provides the input 
information for the synthesizer's back-end.  

 
4.2. Pitch-Marking 

We have observed that minimal pitch mismatches can 
cause noticeable synthesis artifacts. Based on this empirical 
experience, we feel that highly accurate pitch-marking is critical 
to high quality synthesis. Since we do not have the manpower to 
manually review and adjust pitch-marks, we put a significant 
portion of our technical effort over the past year into better 
automated pitch-marking.  

Synthesis artifacts can often be minimized by slightly 
adjusting pitch around the join point, such that the mean pitch at 
the ends of the units to be joined is the same. However, herein is 
a dilemma: If the specific pitch marks are not accurate, then we 
can assume the adjustment of pitch will also be inaccurate, and 
there will be a noticeable synthesis glitch at the join point..  

In our speech synthesizer, we make use of pitch marks 
that are usually specified as the first zero crossing from negative 
to positive signal amplitude after the point of excitation of the 
vocal tract.  

For pitch marking we formerly used the software tool 
Praat on a standalone basis, but found it (for this voice and 
others) fairly inaccurate for certain sound classes. In particular, 
for the low F0 portions of the “Greenam” voice, Praat often 
specified too many pitch marks.  
 
Basic approach to pitch marking 

Using Burg's method, we compute 17 Parcor 
coefficients from the speech signal which is sampled at 16 kHz 
for each interval of 320 samples (20ms) weighted by a Hanning 
window, and generate the error signal in an overlap-add method 
proceeding 1/2 of the window length at each step. The residual or 
error signal shows peaks of energy near the points of glottal 
excitation, which are more readily picked out by instead using the 
Hilbert envelope of the signal. The Hilbert transform provides the 
complex valued analytic signal, whereby the real part is the signal 
itself, and the imaginary part the Hilbert transformed signal. The 
Hilbert envelope is the absolute value of the analytic signal, 
which is strictly positive and therefore simplifies identifying 
signal peaks. Pitchmarks are then found by searching in the 
speech signal for zero crossings with positive slope near the 
maximal peaks. This method usually works well for all fully 
phonated vowel sounds, but is not completely reliable for nasal 
sounds and the lateral L sound. The “Greenman” voice used for 
this challenge has some irregular phonations and occasionally has 
very low F0, which could easily be taken as double and triple 
excitation of the vocal tract, leading to incorrectly determined 
additional pitch markers.  
 
Group delay time improves robustness 

The problem of finding and eliminating the additional 
superfluous pitchmarks in each cycle can be overcome if the 

duration of the glottal cycle is known with greater confidence. A 
somewhat more reliable estimate of the glottal cycles can be 
obtained by using in addition to the magnitude of the error 
function, the local group delay function, computed for each 
sample from the error signal.  This was proposed in by P. S. 
Murthy & B. Yegnanarayana [5]. The authors proposed a spectral 
method to compute the short term average group delay time from 
the error signal, which is computationally rather expensive.  In 
our adaptation of this idea, we compute a similar function, 
starting from the residual signal. It is motivated by the fact that 
the differentiation of the Laplace transform of the signal with 
respect to instantaneous frequency is equivalent in the time 
domain to a multiplication of the signal by the (negative) time 
parameter. A simplification is obtained by taking into account 
that the amplitude spectrum of the residual signal is 
approximately flat, allowing one to avoid the spectral 
normalization step in the original article. In our procedure we 
take a short interval of duration T (usually 10ms) around the 
current sampling point and translate the center to the time t=0. 
The signal portion e(t) over this interval from -T/2 to +T/2 is then 
multiplied by -t, with -T/2 < t < T/2, and summed over the 
interval from -T/2 to T/2. The implementation is done by a fast 
convolution method with overlap add, which is faster than the 
calculation in the time domain. The resulting (quasi-) group delay 
time function, in the following denoted g(t), usually shows an 
almost periodic behavior, and readily exposes the periodicity of 
the original speech signal.  

A further improvement of the signal g(t) is obtained by 
performing an amplitude normalization in the time domain, 
explained for the example portrayed in Fig. 4. 

 
Figure 4: Pitchmarks derived with Group Time Delay 
 

The signal labeled A in figure 4 is a small portion of 
speech signal. In this example it is a 100 ms portion of speech 
near the end of the word "serves", showing the transition into the 
voiced “s” at the end of the word. The signal labeled B is the 
magnitude (Hilbert envelope) of the error signal. The error signal 
(not shown) was used to compute the group delay time function 
g(t), labeled C in the figure. The signal labeled D is obtained by 
lowpass filtering of g(t) and dividing by its Hilbert envelope. 
Taking again the Hilbert transform of the signal shown as D, the 
phase function E is obtained. It is portrayed here as a saw-tooth 
function by taking its modulo 2π, but is actually computed as an 
unrolled phase, which also allows us to detect phase jumps that 
sometimes occur in rapid transitions of the speech signal. We thus 
have a clean definition of the instantaneous pitch period duration. 
To obtain pitch marks, within each interval of phase change by 



2π, we look for the maximal point of excitation in the magnitude 
of the residual (B) for the nearest zero crossing with positive 
slope.  
 
Improve pitch marking with neural network 

The method described above is a slight improvement 
over using Praat, but to make it 100 percent reliable takes a lot of 
additional tweaking.  

For a given voice it is usually possible to find problems 
by inspection and build special code that reduces the errors, for 
example by inventing rules governing the selection among 
ambivalent pitch markers. Usually a lot of additional threshold 
parameters need to be tweaked to get satisfactory results.  

An improvement can be made by making use of a 
neural network that learns constraints for generating pitch marks, 
and thus learns to predict the rough position of pitch marks 
directly from the speech signal.  

Usually, the mistakes made by a conventional pitch 
marking algorithm, including our own, reveal themselves only by 
close inspection of a large number of samples. However, with a 
sufficiently accurate pitch marking algorithm it is usually 
possible to find by direct inspection of the results a large set of 
speech samples for which pitch marking is error-free.  

We then train a neural network based on only these 
examples. The neural network we are using is a standard multi-
layer perceptron with two hidden layers and one input layer. It 
makes use of hyperbolic tangent output non-linearities. The 
neural network receives as input several consecutive samples 
from the speech signal, several samples from the error signal and 
its magnitude, and in the case of the feed forward network, the 
Parcor coefficients used for computing the residual signal. The 
technique is explained by an example shown in Figure 5. 

 
Figure 5: Use of a Neural Network for pitchmarks 

 
In this figure 5, signal A is a short portion of speech 

signal, and signal B is the magnitude of the error function 
(Hilbert envelope). The pitch marks, which are already given 
here, are shown as vertical lines through the plot. During network 
training, a signal exemplified as C in the figure is computed as 
follows: For each pitch mark in the training set, the closest 
maximum of the error magnitude function is searched in a small 
interval of 2.5 ms before the pitch mark. At this position, which 
usually coincides with the actual local maximum of the 
magnitude signal, a bell shaped signal is generated and added to 
an array that is initialized with all zeros. The resulting signal C 
provides the learning target for the neural network. The neural 
network is trained to approximate the signal C, using the 
difference between its output and the learning target as a learning 
signal in a standard back propagation algorithm. After training 
the network output (signal D in Figure 5) can be treated as a spike 

signal not unlike the original residual magnitude signal, and pitch 
marking is then done in the usual way by finding the nearest zero 
crossing points. For a large data set, we set aside a manageable 
training set (typically 200 to 500 short prompts), for which pitch 
marks already exist by other means or from the methods 
described earlier, but excluding all examples with faulty pitch 
marks. The network is then trained on the selected training set. 
After training and after it has been verified that the neural 
network accurately reproduces the pitch marks from the training 
set, the neural network is used to pitch mark the remaining 
prompts.  
 
4.3. Database creation 

As our labeling and metrics for prosodic structure are 
different from methods commonly used; we modified the Festival 
feature functions to produce relevant linguistic features at 
segment, syllable, word, and phrase levels based on the Lessemes 
and prosodic breaks that the front-end provides as output. The 
end time of each unit came from the label files produced by 
automatic segmentation. Our segmentation procedures are based 
on a slightly modified version of the EHMM software that is part 
of speech tools and Festvox. Acoustic parameters were computed 
for each prompt, and a dimensionality reduction was obtained by 
principal component analysis. The resulting set of parameters 
were then used in building the HMM model for segmentation. For 
building the catalogue, all the linguistic features coming from the 
front-end analysis and the acoustic parameters were collected into 
a binary catalog file, which was then used to train the HME 
model off-line. The same binary catalogue is called by the 
synthesizer during run-time.  

 
4.4. Synthesizer 

While Lessemes help narrow the pool of candidates for 
unit selection and enable more precise targeting, labeling units 
with Lessemes can lead to the problem of non-existing or a sparse 
number of units of particular labels in the database, especially in 
a small database. We handle this problem by incorporating a set 
of fail-over rules. Whenever the target Lesseme has a very limited 
number of or even no matching candidates in the database, the 
fail-over rules look for closely matched Lessemes, e.g., those 
with a different inflection or pitch level, to include among the 
candidates for the target and join cost calculations. The target cost 
is computed as a weighted distance to the acoustic target 
trajectory that is generated by the HME model. The target penalty 
cost is derived from a logarithmic probability that can be 
computed for each candidate using the parameters provided by 
the HME model, namely target acoustic feature vector and 
covariances.  

Similar to Kominek [6], our join cost calculation 
discourages joins between sonorant sounds. The join penalty 
varies depending on the types of sonorants being joined. For 
example, the join between two vowels gets a higher penalty than 
the join between a vowel and an onset lateral sound. We also 
make use of the HME output, namely the variance information, to 
modulate the spectral weights used in the join cost computation.  
 
4.4. Concatenation  

After the best units are selected, they are concatenated 
together in a process that works entirely in the time-domain. For 
this we no longer use Festival but instead built a separate module 
which receives only the information about the units to be 
concatenated. The concatenation of voiced sounds is done pitch 
synchronously, and some mutual adjustments of two sounds that 
are concatenated are made to increase the coherence and to 
reduce clicks and warbles. F0 modifications and duration 



modifications are also done independently of Festival in the 
concatenation module, using information that is transmitted to the 
concatenation module from the HME model.  

 
5. Results and Discussion 

Ten systems participated in the Blizzard Challenge 2012. In 
addition, the original speaker’s voice was evaluated as a 
benchmark, or pseudo eleventh system (system A). System B was 
a benchmark Festival unit selection systems built by CSTR. The 
Lessac Hybrid Concatenation unit selection system was system F. 
During the online evaluation of the task, listeners were asked: (i) 
to judge how similar a system was to the original speaker; and (ii) 
to provide mean opinion scores (MOS) representing how natural 
or unnatural the utterances sounded. This task was done on 
different scales for both single  sentences (0-5 scale as done in 
previous Blizzard Challenges), and short paragraphs (0-60 scale, 
new for Blizzard Challenge 2012),  In addition each listener was 
asked to listen to synthesized semantically unpredictable 
sentences (SUS) and transcribe what they heard. The listeners 
included paid participants, volunteers, speech experts, plus native 
and non-native English speakers. Results for our system in 
comparison with natural recorded human speech, the benchmark 
Festival unit-selection system and others systems are presented 
below. 
 
5.1. Naturalness and similarity to original speaker - 
sentences 

A 5-point mean opinion scale (MOS) was used to 
evaluate both how natural synthesized speech sounds, and how 
similar synthesized speech sounds to the original voice when the 
synthesizer was reading aloud single sentences. This is the same 
methodology as used in previous Blizzard Challenges. With 
respect to naturalness of our synthesized speech, Lessac (system 
F) received a mean MOS score of 3.4 for all data and a median of 
4. For similarity to the original speaker, we received a mean score 
of 3.4 and median of 3. Overall we were ranked in second place, 
based on pair-wise Wilcoxon signed rank tests. One system 
(system C) ranked higher on a statistically significant basis than 
our system and all others.   
 
5.1. Naturalness and similarity to original speaker - 
paragraphs 

A 60-point mean opinion scale (MOS) was used to 
evaluate both how natural synthesized speech sounds, and how 
similar synthesized speech sounds to the original voice. With 
respect to naturalness of our synthesized speech, Lessac received 
a mean and median MOS score of 32 for all data. Overall we 
were ranked in second place, based on pair-wise Wilcoxon signed 
rank tests. One system (system C) ranked higher on a statistically 
significant basis than our system and all others.  
 
5.3. Word error rates 

For the semantically unpredictable sentences (SUS) we 
received a median word error rate of 17% and a mean rate of 
27%. The Wilcoxon signed rank test resulted in little information 
that would give a significant rank ordering of the different 
systems. Based on the Wilcoxon signed rank test, our word error 
rate is worse than natural recorded speech, and comparable to the 
other systems (worse than one, and better than three to a 
statistically significant degree). In other words, for nonsense 
sentences our system has similar word recognition rates as most 
other systems.  

 

6. Conclusions 
We have made good progress in producing near natural sounding 
synthesized human speech highly similar to the original speaker. 
We attribute much of this progress to our recent improvements in 
pitchmarking, and further enhancements to our HME approach.  

We are also pleased that the listening results show that 
our system rendered short paragraphs perceptually better than 
single sentences. We believe this would likely be even more so 
the case for longer paragraphs, and book length texts.  

We are also pleased that we were able to maintain our 
high ranking in this year’s challenge; we have shown that the 
Lessac approach is fairly flexible. Blizzard 2011 was contested 
with the “Nancy” voice, which was supplied by Lessac. The 
Nancy voice corpus was carefully recorded using Lessac 
methods. The “Greenman” voice was not recorded using Lessac 
methods, yet we retained our high placement in Blizzard 
Challenge 2012.  

The overall performance of our system as one of the 
best in the Blizzard Challenge (2nd, closely followed by another 
system) gives us some confidence in support of our general 
strategy to try to represent and capture in the synthesis model 
idiosyncratic properties of the original voice that are not directly 
represented by known explicit models. For the symbolic 
representation of speech sounds for synthesis we use a novel 
method that is a departure from traditional phonetics by 
introducing Lessemes, which carry both segmental and 
suprasegmental information and allow for much more fine 
grained tagging of speech. This tagging process is done fully 
automatically, starting from plain text. The processing done by 
the front-end results in a very rich stream of features that are 
encoded with the speech samples in the acoustic database. We use 
methods of machine learning to create a sufficiently 
comprehensive model of the voice without having to make too 
many assumptions about the nature of the relationship between 
acoustic parameters and perceived prosody.  

Our hope is to demonstrate that since all of our voice 
building processes are fully automatic, and we do not rely on any 
manual pitch-marking, segmentation or labeling processes, 
Lessac techniques can be used to build multiple near natural 
human sounding synthetic voices quickly. 

Participating in the Blizzard Challenge has proven very 
helpful for us in guiding further improvements of our 
technologies.  
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