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Abstract 
This paper describes the Text-to-Speech (TTS) systems 

presented by the Buceador Consortium in the Blizzard 
Challenge 2011 evaluation campaign. The main system is a 
concatenative hybrid one that tries to combine the strong 
points of both statistical and unit selection synthesis (i.e. 
robustness and segmental naturalness respectively). The 
hybrid system has reached results significantly above average 
as far as similarity and naturalness are concerned, with no 
significant differences with most of the systems in the 
intelligibility task. This clearly improves the performance 
achieved in previous participations, and shows the validity of 
the hybrid approach proposed. Besides, an HMM-based 
system was built for the ES1 intelligibility tasks, using an 
HNM-based vocoder. 
Index Terms: speech synthesis, unit selection, statistical 
synthesis, hybrid TTS system 

1. Introduction 
The Blizzard Challenge is an evaluation that compares 
algorithm performance of different text-to-speech (TTS) 
systems built with a common speech database. After a few 
weeks for voice building, participants are asked to synthesize 
several hundred test utterances that will be evaluated with 
respect to naturalness, similarity to the original speaker and 
intelligibility. 

Buceador Consortium is formed by two research groups 
with extensive experience in TTS: TALP from Universitat 
Politècnica de Catalunya (UPC), and Aholab from the 
University of the Basque Country. Ogmios [1] is the TTS of 
the former and AhoTTS [2] the one of the latter. Both groups 
have taken part separately in previous Blizzard Challenge 
campaigns [3][4]. 

In this joint effort, UPC has provided the linguistic 
processing module for English, whereas Aholab has developed 
the prosodic and acoustic modules for two different TTSs: a 
statistical parametric system and a hybrid one. 

This paper is organized as follows. First, we describe the 
characteristics of the two systems. In Section 3 the voice 
building process is explained. The evaluation results are 
presented and discussed in Section 4. And finally, some 
conclusions are drawn in Section 5. 

2. Systems Overview 
Two systems were developed: a statistical parametric one 
based on HTS [5] and a hybrid concatenative TTS [6]. The 
former was used in the ES1 task and the latter as the main 
English voice (EH1). They both share the language processing 
module developed by UPC. 

2.1. Language Processing 

The main goal of the front-end of a TTS system is to 
transform the input text into explicit linguistic information 
which is used to select either the units (in unit selection back-
ends) or the models (in statistical synthesis). In our system we 
have used Ogmios to do so. The system first tokenizes the text 
into standard words, numbers, acronyms, etc. and verbalizes 
them. The tokenizer segments the text into tokens by means of 
a set of rules (regular expressions) taking into account features 
such as white spaces, punctuation, case, and also with specific 
rules for dates, url, etc. The tokenizer also assigns to each 
token a label that identifies the type of token (e.g.: ordinal 
number, month, etc.). The next step, the verbalization, 
transforms tokens which are not found in the lexicon into 
standard words. The tokenization and verbalization rules cover 
the most frequent cases in English, as different types of 
numbers (ordinal, cardinal, currency, etc.), acronyms, dates, 
url, etc. 

POS tagging is performed using a basic statistical tagger. 
The probability of POS tag sequences are derived using 1 
million tokens from the Penn Treebank WSJ Corpus. For 
unknown words, CART is used to estimate the probability of 
each possible tag. 

The pronunciation of each word is based on the Unisyn 
lexicon provided by the University of Edinburgh [7]. It 
consists of 110K word entries and it is coded to represent 
different dialects. In order to increase its coverage, the lexicon 
was extended with words which are present in the LC-STAR 
US-English dictionary [8] and are not included in Unisyn. 
This LC-STAR lexica is multilingual and includes, for each 
language, 50K common words and 50K names and other 
specific words. Even if both lexica (Unisyn and lc-star) 
represent the pronunciation using SAMPA, the transcription 
criterion is slightly different. As a consequence, only 30% of 
the words which are present in both lexica share the same 
phonetic transcription. In order to improve the compatibility 
between both lexica, a finite state transducer was inferred to 
transform the LC-STAR lexicon into the Unisyn lexicon. The 
process is basically the same that we apply to the grapheme-
to-phoneme task. 

First, the words which appear in both dictionaries are 
selected. The pronunciation of Unisyn lexicon is called the 
target pronunciation while the one from the LC-STAR is 
called source pronunciation. Both pronunciations are aligned 
by means of an EM algorithm to map each phoneme from LC-
STAR to one from Unisyn. The probability of the bi-phoneme 
sequences is estimated using ngrams. Finally, given the source 
pronunciation, we choose the target pronunciation so that it 
maximizes the joint source-target probability. This is 
implemented using a non-deterministic finite state transducer. 
The use of this technique raised the compatibility of both 
dictionaries, evaluated in an independent set of words, to 83%. 
The pronunciation of unknown words is derived using a 



grapheme-to-phoneme finite-state transducer which is trained 
from the Unisyn lexicon using the same procedure: letters are 
the source information and phonemes are the target 
representation. 

Some rules were hand-coded to model the pronunciation 
changes produced in continuous speech. For function words, a 
set of rules was produced based on factors like word’s position 
in the sentence, POS and phrase accent. In continuous speech 
the function words usually lose their accented form and the 
full vowels are reduced to the shorter vowels or schwa. 
Furthermore, a set of phonotactic hand-crafted rules was 
applied. These rules cover different phenomena from aspirated 
plosives, to consonant assimilation and elision. 

In the training phase, pauses were introduced during the 
alignment process. The viterbi algorithm was constrained with 
the phonetic transcription, but an optional silence between 
words was allowed. In the operative phase the major breaks 
were predicted using our previous break/no-break decision 
tree classifier (CART). The classifier was trained on one of 
the TC-STAR baseline voices [9] which consist on 10 hours of 
speech read by a professional speaker. 

2.2. Speaker-dependent HTS 

Aholab had already built an HMM-based TTS system for 
Basque [10] and Spanish [11] based on HTS. The HNM-based 
vocoder presented in [12] is used to obtain the framewise 
parametric representation of the speech signals at three 
different levels: log-f0, Mel-cepstral coefficients, and 
maximum voiced frequency (MVF). This vocoder allows 
high-quality waveform reconstruction too. The test utterances 
were synthesized using HTS_engine version 1.03, modified in 
order to include the HNM-based vocoder. 

2.3. Hybrid System 

The architecture of the hybrid system is shown in Figure 1. In 
short, HTS output is used as target prediction in the unit 
selection module. First, pitch and duration predictions from 
HTS are combined with internal ones and then, spectrum 
parameters are used in order to calculate the distance between 
target and candidate units. The hybrid approach tries to 
combine the robustness of the average modeling with the 
segmental quality of natural speech units. 

 

 
 

Figure 1: Hybrid TTS Architecture 

2.3.1. Prosody Module 

Most hybrid TTSs rely just on HMM’s prosody prediction. 
However, better duration prediction can be achieved through 
the fusion of different techniques [13]. Besides, in [14] they 
got the best MOS (Mean Opinion Score) by imposing an 
external duration to the HMM-based intonation curve. 

In our hybrid approach, a linear combination between 
HTS and CART duration predictions is performed. First, 

phone duration is predicted inside HTS engine. Then, this 
prediction is linearly combined with the one from the standard 
prosody module and forced at phone level. Finally, HTS 
predicts the length of each state inside the externally 
predetermined phone length. Three broad phoneme classes are 
taken into account during the fusion: voiced consonants, 
unvoiced consonants and vowels. 

The fusion of the two intonation curves is performed in 
several stages. First, f0 values are linearly interpolated in 
unvoiced regions and both curves are segmented at phone 
level preserving only the f0 values of canonically voiced 
phonemes. For each voiced phoneme a 3 point pitch 
stylization is performed. Finally, a weighted linear 
combination is performed between aligned phone sized pitch 
portions. 

This simple approach has yielded slight improvements in 
objective measures and statistically significant ones in 
subjective black box tests [6]. 

In the prosody fusion process explained above, weights of 
the linear combination had been manually tuned, giving more 
relevance to the HTS pitch prediction and to the CART 
duration prediction respectively, according to the results of 
objective tests done for other voices. 

2.3.2. Unit Selection 

During the unit selection process, most hybrid TTSs rely 
solely on the acoustic trajectories generated by the statistical 
parametric system. Contrary to that option, we maintain the 
usual linguistic and prosodic target sub-costs of the baseline 
system, adding just a new sub-cost: 
Spectral Distance: Frame based Euclidean distance between 

target (HTS output) and candidate units after DTW 
alignment. The distance is manually weighted according to 
three reduced phonetic classes: vowels, voiced and 
unvoiced consonants. 
The main advantage of this approach is that selecting the 

units by means of modeling both explicitly (output of HTS) 
and implicitly (linguistic target sub-costs) their acoustic 
similarity, seems a more robust procedure. One of the key 
contributions of the spectral distance is to prevent “bad units” 
(i.e. wrongly labeled or poorly pronounced) from being 
selected, achieving more consistent synthesis. As the 
computation of spectral distances is especially time-
consuming, only linguistic and prosodic (and therefore much 
less complex) target sub-costs are used in a pre-selection 
stage, speeding up the synthesis process that way. 

2.3.3. Waveform Generation 

The selected candidate units are joined using glottal closure 
instant information so as to get smooth concatenations. It is 
well known that prosody modifications reduce the overall 
natural quality of the voice. So, having in mind the size of the 
corpus available, it was decided not to perform any kind of 
modification, but energy normalization. 

3. Voice Building 
This year, a large speech database was kindly supplied by 
Lessac Laboratories Inc for Blizzard Challenge 2011. The 
database consists of 12000 utterances recorded by a US 
female voice talent, lesseme labels and pitch marks. Lessemes 
are a symbolic representation that, apart from phonetic 
information, also include co-articulation and supra-segmental 
features to try to capture the musicality of speech [15]. In 
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addition to this, prosodic breaks and operative words (that 
carry the highest pitch prominence) were marked in the 
available texts. But due to lack of time, none of that 
information was used during the voice building, although it 
would probably improve the quality of the synthesized speech. 

The voice building process involves several sequential 
tasks that are performed almost automatically. After 
segmentation labels are ready, linguistic and acoustic features 
are extracted and then, unit selection database and prosody 
models are built and target weights are trained. The training 
process of the statistical parametric voice is automatically 
done, once proper questions for building the trees are set. 

3.1. Segmentation 

We decided not to use the lesseme format provided by the 
organizers. Therefore, standard US SAMPA phonetic labels 
were generated from plain text by Ogmios. A 16kHz sampling 
rate was used during the voice building process. 

The whole corpus was segmented with HTK toolkit [16]. 
Tied-state triphone models were trained from a plain start, and 
phoneme labels were obtained by means of forced alignment. 
Finally, pause boundaries were automatically refined with a 
simple processing based on adjacent phone duration and 
energy threshold. The pruning of the database was performed 
on two levels: sentence and unit. First, sentences containing 
words with unknown POS, as well as a few hundred utterances 
with the worst alignment score were removed. Then, the 
models were retrained and a definitive segmentation was 
achieved. At the lower level, units were penalized during the 
selection process according to an outlier score based on: 
alignment score, spectral distance to the center of phonetic 
clusters and duration outliers. Both hybrid and statistical 
systems were built with these labels. No manual revision was 
done. 

3.2. Feature Extraction 

All the language related features were generated with the 
linguistic processing module of Ogmios. The extraction of the 
acoustic features consists of several steps. First, power 
normalization is performed by measuring the mean power in 
the middle of the vowels for all the sentences, and then 
normalizing each inter-pause interval. Next, pitch contour is 
detected combining three different methods in order to avoid 
gross errors (Aholab’s PDA (Pitch Detection Algorithm) [17], 
get_f0 [18] from Snack Toolkit and Praat [19]). HTK is used 
to generate 13 MFCC parameters calculated with a fixed 5ms 
frame. As far as the HTS training is concerned, the following 
parameters are extracted: f0 + 40 MFCCs + MVF. 

4. Evaluation Results 
Each listener completed three evaluation tasks: (i) Mean 
Opinion Score (MOS) to measure the similarity with the 
original voice, (ii) naturalness MOS, and (iii) an intelligibility 
test comprised of Semantically Unpredictable Sentences 
(SUS) and addresses. The first two tasks were divided into 
more subtasks according to the genre of texts to be 
synthesized: novel, news and reportorial. 

12 synthetic systems took part in the evaluation (identified 
with letters B-M). B is the benchmark Festival unit selection 
system, C is the benchmark speaker-dependent HMM system 
and D is the same as C with 48kHz sample rate data. Natural 
voice (letter A) was also evaluated in order to fix the ceiling 
score. 

In the present section detailed results for our system in 
each of the three evaluation tasks are shown. Unless the 
contrary is expressed results for all listeners are analyzed. The 
average system shown in the figures represents the mean score 
among all synthetic TTS. System ranking or grouping is based 
on the pairwise Wilcoxon test provided by the organization, 
which is a useful tool to know whether differences among 
systems are statistically significant or not. It was computed 
with a significance level of p=0,01 and Bonferroni correction. 

4.1. Similarity Test 

It measures the similarity to the original voice in a likert type 
scale ranging from 1 (Sounds like a totally different person) to 
5 (Sounds like exactly the same person). The results for all the 
listeners and different types of input texts are shown in Figure 
2 and Figure 3. 
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Figure 2: Similarity to the Original voice 

 

 
Figure 3: Similarity boxplot for all data – all listeners 

 
Buceador TTS gets a similarity MOS of 2.8, whose 

absolute value is somehow low, considering that our system 
concatenates natural segments with almost no modification. 
We suppose that listeners tend to score not only the segmental 
similarity but the supra-segmental one (prosody), and 
concatenation artifacts may play an important role in the 
subjective evaluation too. In any case, our system scores 
above the average being significantly more similar to the 
original voice than 5 systems (C,D,F,J,I) and significantly less 
similar than 2 systems (G,E). Besides, there is no significant 
difference between our hybrid system and the reference 



Festival system, whereas in Blizzard Challenge 2009, the 
reference system was significantly better in this task. 

4.2. Naturalness Test 

It measures the naturalness of the systems in a likert type scale 
ranging from 1 (Completely Unnatural) to 5 (Completely 
Natural). Results are displayed in Figure 4 and Figure 5. 
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Figure 4: Naturalness 

 
The Buceador system obtains a naturalness MOS of 3.0. It 

is significantly more natural than 7 systems (B,C,M,D,F,J,I) 
and significantly less natural than 3 (G,E,H). We believe that 
the hybrid approach has succeeded in improving the 
consistency that unit selection systems usually lack. Just one 
bad join or incorrectly labeled unit can spoil a whole sentence. 
Introducing the spectral output of the HMM-based system into 
the unit selection algorithm has alleviated this problem. 
Besides, the combination of two prediction methods produces 
a more robust prosody. While in Blizzard 2009 the reference 
system B was significantly better than ours, results have 
reversed this year, showing the performance improvement due 
to the hybrid approach. 

 
Figure 5: Naturalness boxplot for all data – all listeners 

 
Looking at the genre of the texts synthesized, the worst 

results are obtained for the Reportorial data. That type of data 
consisted of long sentences in which the probability of having 
a bad join increases dramatically. In fact, the absolute value of 
the correlation between the average number of syllables per 
sentence in each domain (9.5 for Novel, 13.7 for News and 
44.9 for Reportorial) and the MOS of Buceador, is pretty high: 

ρ=-0.92. We are not stating a causal relation between sentence 
length and MOS, because other issues must be taken into 
account as well (e.g. domain). But it is reasonable to expect 
that longer sentences will demand more complex phonetic or 
prosodic contexts that may have little or no representation in 
the corpus, thus reducing the quality of the synthesized 
speech. 

4.3. Intelligibility Test 

Organizers computed Word Error Rates (WER) for SUS and 
addresses as a measure of intelligibility. Figure 6 and 7 
display these results. 
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Figure 6: Intelligibility 

 
Buceador TTS has a WER of 15% for addresses, 22% for 

SUS and 20% for all data. Two systems (C,F) are significantly 
more intelligible than ours, and there are no statistical 
differences with the rest. The speech submitted to the SUS 
intelligibility task was synthesized with the hybrid TTS, 
whereas the address task was synthesized with the HMM-
based system. Our statistical system has yielded good 
intelligibility results, although there seems to be no significant 
differences among all the systems (including natural speech) 
in this particular task, perhaps due to its relative ease. The 
hybrid approach has taken advantage of the robustness of the 
statistical modeling, reducing the problems associated with 
labeling errors or poor pronunciations. 

 
Figure 7: Word error rate for all data – all listeners 

 



5. Conclusions 
Two synthetic voices have been built for Blizzard Challenge 
2011. On the one hand, an HTS-based TTS with a vocoder 
based on a parametric representation extracted from an HNM 
analysis. On the other hand, a hybrid system that tries to 
combine the strong points of statistical and unit selection 
synthesis (i.e. robustness and segmental naturalness 
respectively). Buceador system has been a joint effort between 
two research groups: UPC (linguistic processing) and Aholab 
(prosody and acoustic modules). 

Although the obtained results have been quite good, 
several decisions or intrinsic circumstances may have 
prevented our system from achieving a better performance. 
Due to the lack of time and uncertainty about how long would 
it take to train the HMM-based system with such a big 
database, we did not modify our system in order to use the 
prosodic labels provided by Lessac (e.g. prominence and 
prosodic breaks). Their inclusion would probably improve the 
naturalness of the synthetic voice. In addition to this, the 
absence of native speakers in the development team hinders 
the necessary fine tuning of the voice. In any case, the fact is 
that the hybrid approach has reached promising results, 
significantly above average as far as similarity and naturalness 
are concerned, and with no significant differences with most 
of the systems in the intelligibility task. 

There is still a significant gap between synthetic systems 
and natural speech in all the sections but the intelligibility 
task, in which the HMM-based system C gets comparable 
WER to the natural speech. 
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