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Abstract 

In this paper we describe the voices we submitted to the 2010 
Blizzard Challenge, a yearly challenge to evaluate auditory 
speech synthesis on common data. One of the goals of a data-
driven synthesizer, such as ours, is to generalize the speech 
database in such a way that it allows a realistic rendition of 
unseen input text. The two main changes to our system, 
compared to previous submissions, are the inclusion of an 
HMM-based acoustic prosody model, and the automatic 

training of context-dependent target cost weights. These 
weights are estimated for each individual target during 
synthesis, and depend on the linguistic features of these targets 
which encompass their broader linguistic context. Another 
new aspect of our synthesizer is the ability to synthesize 
Mandarin Chinese speech. Its evaluation helps us assess the 
quality of our synthesizer for languages unfamiliar to the voice 
developers. Evaluation results and possible improvements to 

our synthesizer are also discussed.  
 
Index Terms: speech synthesis, unit selection, weight 

training, evaluation 

1. Introduction 

The Blizzard Challenge is a yearly speech synthesis challenge 
to evaluate auditory speech synthesis on common data. For 
UK English, two speech databases were provided this year: a 
large database (RJS) consisting of about 4000 sentences, and a 
smaller one (Roger), which was also used in previous 

challenges and which is based on the ARCTIC corpus [3]. A 
version of the RJS database with a 48 kHz sampling rate was 
also provided by the Blizzard organizers. The other databases 
were only available with a 16 kHz sampling rate.  

The VUB team has already participated in previous 
challenges with its DSSP synthesizer (2008 [1], 2009 [2]). 
This synthesizer is a unit selection-based synthesizer that uses 
non-uniform units (phrases, words, syllables and diphones or 

phones). The same UK English front-end as last year‟s 
challenge has been used for the UK English voices. In this 
paper, we focus mainly on the changes we made to our 
synthesizer. In contrast to our previous entries, this years‟ 
entry also includes Mandarin Chinese voices. Although this is 
a language that we are quite unfamiliar with, it was still 
possible to produce the two required Mandarin voices thanks 
to the supplied HTS labels for Mandarin, which provided both 

segmentation and linguistics features. This illustrates the 
ability of our synthesizer to support new languages relatively 
easily. Both Mandarin voices were based on the same 
database, except that only a subset of the database (800 
sentences) was used for one of them.  

This paper is structured as follows. In section 2 we give an 
overview of the voice building process of the English voices. 
In section 3 we describe the differences between the Mandarin 

and English voices and how the Mandarin voices were build. 

Results and discussion of the Blizzard Challenge evaluation 
are given in section 4. Section 5 concludes our paper.   

2. Voice building 

Data-driven speech synthesis, such as unit selection, requires a 
large speech database (at least 1 hour; up to 6 hours of speech 
and more) in order to produce high-quality synthesized speech. 
This large amount of high-quality speech from a single 
speaker is needed to train various aspects of the synthesizer, 
such as prosody models and acoustic models for segmentation. 
By using the speech database as effectively as possible, the 

synthesized speech can become closer to the original. This 
approach is also one of the main characteristics of the DSSP 
synthesizer. As most of the training algorithms require little or 
no human input, the construction of a new voice for our 
synthesizer is largely automated. Our voice building process 
can be summarized as follows. Firstly, the speech database is 
labeled and segmented, and acoustic features such as MFCC‟s, 
f0 and energy are calculated for each utterance of the database. 

These features are used, for example, to compute the join cost. 
Secondly, based on the labeled pauses in the database and 
linguistic features extracted from the text transcription of the 
utterances in the database, a silence and phrase break 
prediction model is trained [1] (this model is part of the 
synthesizer‟s front-end). Each segment (i.e. each phone) of the 
database is labeled with various linguistic features. These 
features are used to generate a multi-level segmentation of 

each utterance: each utterance is segmented into phrases, 
words, syllables and phones. The next step is to train prosody 
models and trainable target and join costs. Finally, the voice 
needs to be tuned by choosing appropriate synthesis 
parameters, such as the target and join cost weights. In the 
remainder of this section, we focus in more detail on some of 
these aspects. 

2.1. Segmentation 

Accurate segmentation is a crucial aspect of building a high 
quality voice. Our approach is to use the speech database and 
the corresponding text to train acoustic models for an HMM 
forced aligner, and to use these models to segment and label 
the database. For this year‟s challenge, the organizers provided 
also a manually corrected segmentation for the Roger voice. 

Although it would be interesting to know the difference in 
terms of synthesis quality between an automatically generated 
segmentation and a manually corrected version, due to timing 
constraints we were unable to build a version of the Roger 
voice using the manually corrected segmentation. 

Like in last year‟s submission, we used the open-source 
speech recognition toolkit SPRAAK [4] to segment and label 
the utterances. A standard 5-state left-to-right context-

independent phone model was used, with no skip states. 
Speech was divided into 25 ms frames with 5 ms frame-shift. 



For each frame, 12 MFCC‟s and their first and second order 
derivatives were extracted. The acoustic models generated for 
last year‟s Roger submission, were used to bootstrap the 
acoustic model training. Based on the orthographic 
transcriptions and a lexicon, input files for the segmentation 

algorithm are created automatically. Utterances with out-of-
vocabulary words are discarded and are not used in the rest of 
the voice building process. These words and their 
corresponding utterances are listed, so the voice developer can 
opt to manually add the missing entries, if necessary. Words 
having multiple pronunciations are supported, and the most 
likely pronunciation is automatically selected.  

2.2. Prosody models 

In previous versions of our synthesizer, the prosody was not 
predicted explicitly, but described in terms of several symbolic 
(linguistic) features, such as lexical stress, part-of-speech, etc. 
Acoustic prosody models use those features to predict the 
prosody in terms of acoustic parameters, such as duration and 
f0. Although current models are not perfect, the generated 

prosody is usually quite smooth and stable, and often 
corresponds to an acceptable rendition of the input text. Also, 
using predicted acoustic targets in unit selection might reduce 
the number of weights which needs to be set, as fewer acoustic 
target cost functions are needed to describe the prosody than 
when using symbolic target cost functions. Obviously, the 
accuracy of prosody models and the variability of natural 
speech should be taken into account when using the predicted 

prosody as the target prosody. Our system uses an HMM-
based prosody model. We predict duration and f0, but the 
system can easily be extended to other acoustic features. 

In order to train the prosody model, each phone of the 
database should be segmented into N states. In our case N=5 
and the segmentation was obtained using speaker-dependent 
HMM models, generated by HTS [5]. State durations are 
predicted for each phone of the database using the symbolic 

features of the phone as input. The predicted durations for a 
single phone are scaled linearly to match the actual duration of 
the phone and each phone of the database is split into N states. 
The HMM forced-aligner which was used to segment and 
label the database could also have provided us with a 
segmentation into states, such that it would not have been 
necessary to train HTS models. However, since in SPRAAK 
only spectral information is taken into account, this 

segmentation might not be as suitable to train prosody models 
as HTS.   

The questions that are used to split the decision trees of the 
prosody models are generated automatically based on the 
symbolic features and values present in the training database. 
The first step of the actual training process is to train duration 
models, which results in N decision trees, one for each state. 
Mean and standard deviation are calculated for each 
phone/state combination and z-scores are calculated for all 

states in the database. These z-scores and the linguistic 
features of the corresponding phone are used to train the 
decision trees. As these are standard regression trees [6], we 
use Wagon, part of the Edinburgh Speech Tools, for training. 
While synthesizing, the duration of each state can be predicted 
by obtaining the z-scores and the mean and standard deviation 
of the corresponding phone/state combination. The total 
duration of a particular phone is the sum of its state durations. 

The duration models are used to obtain a second segmentation 
of the database in states, which is used in further training. 

The next part of the training process consists of training 
the f0 models. The database is analyzed using STRAIGHT [7] 
in order to calculate f0 and voiced/unvoiced information for 

each frame. A frame-shift of 5ms was used. While 
synthesizing, we need to determine whether a state is voiced or 
not. Therefore, classification trees [6] are being used. For each 
of the N states, a classification tree is trained with the 
voiced/unvoiced information of the frames of the training 

database as input. The voiced frames are used to train 
regression trees with Wagon, with log f0 and the 
corresponding linguistic features as input. The leaf nodes of 
the generated trees are expanded with the mean and standard 
deviation of the delta and delta-delta log f0 of the clustered 
states. The f0 contour is calculated in 5 ms steps in a similar 
fashion as in [8], using dynamic features (delta‟s and delta-
delta‟s) and global variance.  

 

 Roger RJS 

 HTS Proposed HTS Proposed 

RMSE 0.0319 0.0257 0.0294 0.0246 

MAE 0.0231 0.0185 0.0219 0.0179 

Corr. 0.735 0.843 0.753 0.833 

 Table 1. Evaluation of the duration models for the 
Roger and RJS voices.  

 Roger RJS 

 HTS Proposed HTS Proposed 

RMSE 0.184 0.168  0.177 0.155 

MAE 0.0935  0.0830 0.106 0.0966 

Corr. 0.476  0.508 0.512 0.543 

U/V 20.4 %   18.9 % 14.3 % 12.2 % 

Table 2. Evaluation of the f0 models for the Roger and 
RJS voices.  

The validity of our prosody model was tested in an initial 
evaluation and compared to the standard HTS training and 
prosody generation using hts_engine (both using default 
settings). The first 50 utterances of the RJS and Roger voices 

were used as a test set, and discarded from the training. The 
stop factor is a parameter that controls the size of the decision 
trees by indicating the minimum amount of training samples 
that are clustered in a single leaf node and was optimized by 
trial and error. A rather small stop size was found to give the 
best results for the duration models (stop size = 10). A much 
larger value was needed for the f0 models (stop size = 150 and 
200 for the Roger and RJS voices, respectively). The same 

factor was used for the voiced/unvoiced classification trees as 
for the log f0 regression trees. Evaluation was performed by 
calculating the root mean square error (RMSE), mean absolute 
error (MAE), and correlation between the predicted values and 
the actual values found in the test set (Corr.). For duration, 
segmental duration (i.e. phone duration) was evaluated. For 
log f0, corresponding frames were found by linear scaling of 
the target and predicted contours. Only those instances where 

the predicted and target frames are both voiced were taken into 
account, but the percentage of frames which are incorrectly 
classified as voiced or unvoiced was also calculated (U/V 
error). Results are shown in tables 1 and 2. Although the 
proposed models are not that complex, an improvement over 
the baseline can be seen for both the duration and the f0 
prediction. Similar improvements have been found with other 
voices we build (e.g. Mandarin Chinese voices, CMU Arctic 

voices …). The improvements in terms of duration are most 
likely caused by the use of z-scores, while the slightly better f0 
contour prediction, compared to the multi-space probability 
distribution HMM used in HTS, is probably due to a slightly 
better voiced/unvoiced classification. Further improvements 
can probably be made by using different stop factors for the 



training of the unvoiced/voiced classification and the log f0 
regression trees and by incorporating dynamic features (delta‟s 
and delta-delta‟s) in the construction of the log f0 regression 
trees.  

2.3. Target and join costs 

Our system supports several types of target costs, such as costs 
based on symbolic features, acoustic features or statistical 
models. All of these types of costs were used in the 
construction of the submitted voices. The following symbolic 
target costs are used: next and previous phone, position of 

word in phrase, position of syllable in word, part-of-speech, 
punctuation and syllabic stress. The acoustic costs are based 
on the predicted segmental durations and f0 contour, using 
either an absolute Euclidean distance or a Euclidean distance 
between relative values (in terms of the predicted target 
values). Furthermore, two statistical costs are used, estimating 
the likelihood of segmental durations and f0 from the same 
HMM models that were used to determine the target prosody. 
As all these target costs have different ranges of values, a 

scaling factor is computed for each target cost. This scaling 
factor is the 95th percentile of the values for the non-symbolic 
costs; as the symbolic costs are either 0 or 1, they do not need 
scaling. 

The same statistical join cost was used as last year‟s 
submission [4]; this cost models the likelihood of acoustic 
differences at join boundaries. The weight of this cost was 
tuned by trial and error, through iterative listening.  

 

 

Figure 1: Illustration of the context-dependent weight 
for the target cost function “duration” throughout the 
sentence “Throughout the act clothes came off”, in 

which the targets correspond to phones. Notice the 
different values of the weight for the different 
instances of the phones /#/, /k/ and /t/. 

2.4. Weight training 

One of the key challenges of optimizing a unit selection voice 
is obtaining suitable target cost weights. Different weight 
values are needed because the cost functions are not all of 
equal importance, i.e. some may influence the synthesis 
quality more than others. Typically, these weights are trained 
manually (e.g. using expert knowledge or iterative listening 

experiments). One of the reasons that manual training is not 
that straight-forward and can be quite time-consuming, is that 
these weights not only depend on the particular target cost 
functions used, but also partly on the targets themselves. Some 
examples of these effects are given in [9], for example the 
influence of /r/ before and after vowels, and the increased 
sensitivity of sonorants to position and promince compared to 
non-sonorants. Also, the quality of a particular target cost 

function might not be constant. For instance, some target costs 
are calculated using predicted acoustic parameters. When 
these predicted parameters are less reliable or accurate, the 

weight of the corresponding component of the target cost 
should be lowered. These examples suggest that, in order to 
yield the best possible synthesis quality, each individual target 
should receive a specific set of weights, optimized for that 
particular target. As targets are typically described in terms of 

linguistic features which do not only incorporate the phonemic 
sequence, but also the broader linguistic context of these 
features, we call this particular type of weights, context-
dependent weights. An example of such weights for the target 
cost function that accounts for absolute duration differences, is 
shown in figure 1. 

In order to obtain different sets of weights for different 
targets, we can cluster the targets and train a set of weights for 

each cluster, e.g. one for each individual (di)phone. As these 
clusters need to be specified beforehand, it is not clear how to 
choose an optimal set of clusters manually. A better solution is 
to generate these clusters dynamically as in [10] or [11]: the 
clustering is performed by constructing a decision tree 
containing phonetic questions about the targets. For each of 
the targets clusters - these correspond to the leaf nodes of the 
decision tree - a set of weights is trained. The broader context 

of a particular target, described in terms of linguistic features, 
is, however, ignored. Incorporating this broader context, or 
even adding additional linguistic information about the targets 
(e.g. lexical stress …) in the constructing of the decision tree 
increases the computation time tremendously.  

This is one of the reasons why our approach works the 
other way around. Firstly, an automated weight tuning 
algorithm is used to generate optimal weight sets for each unit 

in the training database. Secondly, these weights are clustered 
using decision trees. This weight training framework is quite 
flexible in the sense that it allows experimenting with several 
weight training algorithms, clustering algorithms and objective 
acoustic distance measures. Objective acoustic distance 
measures are needed for fully automatic weight training, since 
we need to know which units are closer to each other. 
Although none existing measure matches human perception 
perfectly, using only objective measures has the advantage that 

more training material can be taken into account which 
increases the robustness of the weight training.  

An optimized weight set for a particular speech unit can be 
calculated by treating this unit as the target, and selecting a set 
of units sharing the same phonemic sequence as candidate 
units. An objective distance measure can then used to calculate 
the acoustic distances between the target unit and the 
candidate units. These distances, in combination with the 

target costs between the target and the candidate units, can be 
used as input to an automated weight tuning algorithm to 
generate the optimal target cost weights.  

As we needed to finish building the voices for this year‟s 
Challenge on time, our algorithms were adapted to speed up 
the training process. Firstly, as there are typically many 
instances of each phoneme1 in the database, we only use a 
subset of these instances in order to speed up the weight 

training. This subset is selected by uniformly sampling the 
phoneme instances based on their acoustic distance with the 
target unit. As such, a similar but smaller distribution of 

                                                             
 
1  The smallest units that our system is able to select are 
demiphone-sized units. While synthesizing, target costs are 

calculated for each (demi)phone of a particular unit. As the 
two halves of a particular target phone share linguistic 
features, context-dependent weights have to be predicted for 
each phone of the target utterance. This implies that the target 
units used for the weight training will correspond to phone-
sized units. 



acoustic distances is obtained, which reduces the 
computational load significantly while maintaining the quality 
of the trained weights. In the remainder of this section, the 
term „selected units‟ refers to this sampled subset.  The 
optimal size of a subset is dependent on the amount of weights 

that need to be trained (in our case 100 units). Secondly, we 
also needed to limit the amount of units that were used as 
target unit. For each type of phoneme, at most M units were 
used as target units for which an optimal set of weights was 
trained. Obviously, using fewer target units for weight training 
may decrease the synthesis quality. For the Roger and RJS 
voices, this maximum was set to 200 and 1000, respectively, 
corresponding to 26.0% and 21.6% of the maximum amount 

of units available for training in the respective databases. Note 
that the first 50 utterances were discarded during the weight 
training for evaluation. 

2.4.1. Minimum selection error training 

An important aspect of our weight training algorithm is the 
algorithm that optimizes the weights for a given target unit. In 

order to select the best sequence of units, it is important to 
know whether a unit is better or worse compared to another 
unit. Obviously, if the weighted sum of costs corresponds 
perfectly to a perceptual distance, an ideal comparison can be 
made, but in reality this is not the case. Errors that occur when 
matching costs to perceptual distances cause an incorrect 
ordering of the units, and thus in those cases a suboptimal 
sequence of units will be selected. In practice, an acoustic 

distance between two units is used instead of a perceptual 
distance. If a unit is acoustically closer to the target than 
another unit, this should be reflected in the weighted sums of 
costs of those two units. The quality of a particular set of 
weights W for a given target t can thus be measured by a 
selection error serr(W,t), defined as 

 
 


N

i

N

j
ji tWuuerrtWserr

1 1

),,,(),(  (1) 

with N the number of selected units and err(ui,uj,W,t) an error 
measure between two units ui and uj. Let ci be the weighted 
sum of target costs of unit ui for the target t using weights W 
and di = D(t, ui ) an acoustic distance between the target and 

unit ui. Then the error measure err(ui, uj, W) is set to 0 if 
sign(ci - cj) = sign(di -dj), and equal to │di -dj│ otherwise. 

The n weights for a given target unit can be iteratively 
trained by greedy selection. The algorithm starts by using 
default weights, i.e. all weights set to 1. By using the selection 
error, we can measure the quality of a particular weight set. At 
each iteration, we evaluate various weights sets, and keep the 
one yielding the lowest error. Note that, each time only a 

single weight value is modified. Iteration will stop if no 
improvement can be found or if a predetermined maximum of 
iterations is exceeded. 

As the weighted sum of target costs can be seen as a 
prediction of the acoustic distance between a unit and its 
target, the weights are scaled by a constant scaling factor f, 
calculated by minimizing  
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with N the number of selected units, and ci and di as defined 
above. 

2.4.2. Weights clustering 

In order to generalize weights for unseen targets, the trained 
weights are clustered using decision trees. For each target cost 
function, a separate tree could be build and each of its leaf 
nodes would contains a single weight. The most straight-
forward approach would be to train each tree individually, 

which can be done using standard regression tree training [12]. 
However, as the weights are not independent (since they are 
trained together), we propose to jointly cluster the weights. 
Standard techniques can be used to build the decision tree; at 
each split, the best question is chosen in order to minimize 
impurity. The splitting stops if no improvement can be found 
or if the number of elements in a cluster would become 
smaller than a given stop size. In our case, this impurity is 
based on the selection error (Eq. 1) and can be calculated as 

follows. Let L be the number of target units in a cluster.  
Hence, each cluster contains L optimized sets of weights. The 
quality of a set of weights for a given target unit can be 
estimated by the selection error. Let Wbest be the set of weights 
which has the lowest average selection error over all target 
units. The impurity can then be calculated as 

 )(  bestbestL   (3) 

with µbest the mean and σbest  the standard deviation of the L 

selection errors calculated using Wbest and the L target units. α 
a parameter that needs to be set (e.g. α = 2). Thus, the impurity 
can be considered an estimate of the upper bound of the sums 
of errors. After constructing this tree, each leaf node needs to 
contain a single set of weights instead of L, as each target 
needs a single set of weights during synthesis. The following 
approaches are implemented: 

 For each target cost, calculate the average weights over 

all weight sets of this node. 

 Select the best set of weights Wbest, that gives the lowest 
average selection error. 

For the submitted voices, the following linguistic features 

were taken into account during the decision tree construction: 
current, previous and next phone, syllabic stress, part-of-
speech, syllable position in word, word position in utterance 
and phrase, number of stressed and unstressed syllables of 
current word, punctuation, whether the current word is a 

content word, and whether the current word is capitalized. 
In order to select the best clustering parameters, the 50 

first sentences of each voice were used as a test set. These best 
settings and corresponding weight trees were used in the 
further construction of the voice. Table 3 lists the average 
selection errors on the test sets of the RJS voice, for the two 
clustering approaches and various stop sizes (that control the 
size of the decision trees). Selecting the best set of weights to 

represent the weights of a given cluster of target units yields 
better results compared to averaging the weights. A large stop 
size was necessary for the best results; this can probably be 
explained by the fact that we were unable to use all target units 
available in the database for training the weights. Although not 
listed here, we also tested whether training separate weight 
decision trees for each individual target cost yielded better 
performance compared to the joint clustering, but this resulted 
in errors roughly comparable to the ones obtained by 

averaging the weights in a single cluster. 

2.4.3. Acoustic distances 

When comparing two units acoustically, several distinct 
properties of the acoustic signals should be taken into account, 
such as duration, f0, spectrum, energy … As differences in 



these properties can be measured by acoustic distance 
measures, they can be combined in a single distance measure 
using, for example, the weighted sum of the individual 
measures. As the construction and optimization of this single 
combined measure would require human input (e.g. subjective 

experiments), we choose to use a different approach that is 
fully automatic. We use M acoustic distance measures to train 
several sets of context-dependent weights, one set for each 
distance measure. We need to combine these different sets of 
“base” weights, as one single set of weights must be used 
during synthesis. We assume that the optimal set of weights 
for a specific target is a linear combination of its base weights 
sets. The latter weights are termed combination weights and 

are further explained at the end of this section. 
 

Table 3. Average selection errors for the test set of the 
RJS voice. In comparison, when default weights (all 

weights set to 1) are used, the average selection errors 
are 512.2, 468.5 and 402.9, for duration, f0 and 

spectrum, respectively. 

In our case, acoustic distance measures for duration, (log) f0 
and spectrum were used. Let t be the unit corresponding to the 
target context and u a unit from the selected unit set. Let durt 
and duru be the durations of the target and the selected unit, 
respectively. The duration distance Ddur(t, u) is then calculated 

as: 
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The other distances Df0(t, u) and Dspec(t, u) which take into 
account (log) f0 and spectrum, respectively, are calculated as 
the relative root mean squared error. Let fj and gj be the values 
of an acoustic feature for the jth frame of the target unit and its 
corresponding frame in the selected unit, as found by straight-
forward linear time scaling, respectively. Di(t,u) can then be 
calculated as 
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with N the number of frames of the target unit. In our system, 
features are calculated each 5 milliseconds. 12 MFCCs 
including the 0th coefficient are used for the spectral distance 
measure. Unvoiced frames are discarded when calculating the 
log F0 distance. The quality of the weight training can be 

increased if a ceiling parameter is used for the distance 
measure. In general, units which have a large acoustic distance 
are all bad; in those cases, the exact value of the distance is of 
less importance. Currently, the ceiling parameter is calculated 
as the median of the distance of the selected units. 

The following algorithm is used to find optimal 
combination weights ci for M sets of base context-dependent 
weights Wi. As many equivalent solutions are possible, we add 
the constraints that the sum of these combination weights 

should be equal to 1 and that 0 ≤ ci ≤ 1. We use a small 
number of held-out utterances from the database (e.g. 10 
utterances) and generate M context-dependent weights sets for 
each phone-sized unit of these utterances, which are used to 
calculated M² average selection errors sij for each combination 

of distance measure Di and weight set Wj. These average 
selection errors indicate the quality of a particular set of 
weights using a particular acoustic distance measure. We want 
that the optimal set of weights for a given target, result in 
better weights in terms of all acoustic properties, compared to, 
for example, setting all weights to 1. Therefore, a numeric 
minimization algorithm (e.g. a conjugate gradient algorithm) 
can be used to minimize the following function gm while 

taking into account the previously defined constraints, 
resulting in optimized combination weights :  

 gm = max(g1, g2, … gM) (6) 
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with fi the average selection errors calculated using all weights 
set to 1 using the ith distance measure.  

3. Mandarin Synthesis 

Since a segmentation and HTS labels were provided for the 
Mandarin Chinese database, we used those to build our 
Mandarin voices. Therefore, we did not need to construct a 
complete Mandarin Chinese front-end. As such, we were able 
to adapt our system for Mandarin Chinese and to build our 

first Mandarin voices, within a single week. None of the 
members of our team was familiar with Mandarin speech. 

Each utterance of the provided speech database is 
segmented into initials and finals, which correspond to the 
initial and final part of a Mandarin syllable: the initial part 
consists of the initial consonant of the syllable, while the final 
part consists of a combination of consonants and vowels. 
Similarly to the UK English voices, several types of units were 

used (words, syllables) but the basic units (i.e. smallest 
selectable units) differ: for Mandarin Chinese, these units 
correspond to di-syllable parts which start in the middle of an 
initial or final, and end in the middle of the next initial or final, 
similarly to diphones. Each initial and final was labeled with 
the linguistic features that were extracted from the HTS labels: 
pinyin, tone, part-of-speech, position in syllable and prosodic 
structure features. Information (pinyin, tone, part-of-speech) 

about the immediately neighboring initial or finals is also 
stored. The tone and part-of-speech features enabled us to 
group the initials and finals in syllables and words, necessary 
for multilevel unit selection. Each syllable was labeled in 
terms of pinyin + tone, and each word as the combination of 
its syllable labels. 

A similar set of target and join costs were used as in the 
UK English voices, except for the symbolic target costs: costs 

using next/previous syllable part, next/current/previous tone 
and next/current/previous part-of-speech were included 
instead. The prosody models and weights were trained 
similarly as described in the previous section.  

4. Evaluation and discussion 

This year‟s challenge featured the same hub and spoke design 
as previous editions, in which the hub tasks correspond to the 
required voices, while the spoke tasks are optional. We 
submitted voices for all tasks, with the exception of the task in 
which voices needed to be build based on only 100 sentences 

(tasks ES1 and MS1). For the tasks in which noise was added 

Stop  5 10 20 50 100 200 

Dur. 
Avg. 400.4 397.0 396.1 397.1 397.4 398.8 

Best 390.6 385.0 379.0 373.0 372.3 383.2 

F0 
Avg. 258.2 255.9 255.2 255.0 255.4 257.4 

Best 235.6 230.7 228.1 225.9 224.3 224.2 

Spec. 
Avg. 381.9 382.4 383.5 384.8 385.2 385.7 

Best 379.9 378.5 376.7 375.9 376.0 376.1 



to the speech (tasks ES2 and MS2), we submitted the same 
voices as for tasks EH1 (using the RJS database) and MH1 
(using the full Mandarin database). Our system is indicated 
with the letter P, on the overview plots on the festvox site [12].  

As our system is based on unit selection without any signal 

modification, our voices sound quite similar to the target 
speaker. Overall, both UK English voices performed 
reasonably well, and are statistically similar to the Festival 
benchmark system which corresponds to CSTR‟s 2007 
Blizzard entry. Mean naturalness scores of the two hub voices 
EH1 and EH2 are 3.0 and 3.1, respectively. Surprisingly, the 
use of a larger database did not seem to improve synthesis 
quality, but this may be explained by the use of relatively 

fewer target units during weight training (hence potentially 
suboptimal weights). Using the 48kHz version of the RJS 
database did not seem to improve quality (mean naturalness 
scores of voice ES3 was 2.8). Using a higher sampling rate 
could reveal some of artifacts (e.g. join artifacts) which were 
masked by using a lower sampling rate such as the default 
16kHz.  

The use of the same UK English Roger database as in the 

last two editions of the Blizzard Challenge, in combination 
with the benchmark voices, allows us to compare this year‟s 
results to previous versions of our system. Table 3 lists 
average naturalness scores and average word error rates of 
these voices: these results seem to suggest that (some) 
progress has been made to create more natural, easier to 
understand voices.  
 

 Naturalness Word error rate (%) 

Year DSSP Fest. HTS DSSP Fest. HTS 

2008 2.9 3.1 3.0 45 40 31 

2009 2.5 2.9 3.2 28 21 16 

2010 3.1 2.9 2.7 29 23 20 

Table 4. Average naturalness scores and average word 
error rate using the Roger voice of our system, and 
Festival (unit selection) and HTS (HMM synthesis) 

benchmark systems.  

Performance of the Mandarin voices was almost similar to the 
performance of the UK English voices (e.g. the mean 
naturalness scores of the two hub Mandarin voices was 3.0 and 
2.7, respectively). Manual tuning of the join cost weight 

proved to be quite challenging, and the value of this parameter 
can probably be improved. Furthermore, analysis of the 
synthesized sentences revealed that occasionally short 
repetitions or deletions were present at the join boundaries. 
This can be explained by the type of units we were using (di-
syllable parts) of which the cut-points were set to the middle 
of an initial or final. Ideally, these would occur at the middle 
of the center phone, but this is not always the case due to 

variations of the phone durations within an initial or final. This 
may have had an effect on the intelligibility of the Mandarin 
voices. 

Obviously, when noise is added to the speech, the 
intelligibility becomes smaller and the results of this 
evaluation (tasks ES2 and MH2) for our voice were consistent 
with the results for clean speech (without additive noise). 

5. Conclusions 

In this paper we gave an overview of our 2010 Blizzard 

Challenge submission, and gave some insights in the details of 
our current voice building and tuning procedures. Overall, our 
participation to the Blizzard challenge proved to be quite 
valuable, leading among other things to the development of 

our first Mandarin voices. The evaluation of the submitted UK 
English voices indicates similar quality as the Festival 
benchmark system (CSTR‟s 2007 Blizzard entry). The results 
of our Mandarin voices show reasonable quality, especially 
considering that this was our first attempt at building a 

Mandarin voice, and in view of our limited experience with 
Mandarin or other tonal languages. This confirms the ability of 
our system to support new languages quickly. 

Our system still offers room for improvement. As the 
complexity of the voice building procedure increases due to 
the training of HMM prosody models and the target cost 
weight tuning, for example, the amount of time required to 
build a single voice becomes significantly longer. Therefore, 

in order to complete all voices on time, we had to cut some 
corners and were forced to use less optimal settings, e.g. 
during the training of target cost weights. We believe the 
quality of these weights can be further improved and we are 
currently experimenting with other distance measures and 
clustering techniques. The join cost weight still requires 
manual tuning and this proved to be quite difficult for the 
Mandarin voices. Also, the cut-points we used for these voices 

were not optimal, leading to occasional short repetitions or 
deletions at the join boundaries. A more detailed segmentation 
(i.e. using phones) or joining at initial/final boundaries only, 
could potentially solve these problems. 
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