
The VUB Blizzard Challenge 2010 Entry:

Towards Automatic Voice Building

Lukas Latacz, Wesley Mattheyses, Werner Verhelst

Vrije Universiteit Brussel, Department ETRO-DSSP,

Interdisciplinary Institute for Broadband Technology – IBBT, Belgium

{ llatacz, wmatthey, wverhels } @etro.vub.ac.be

Abstract

In this paper we describe the voices we submitted to the 2010
Blizzard Challenge, a yearly challenge to evaluate auditory
speech synthesis on common data. One of the goals of a data-
driven synthesizer, such as ours, is to generalize the speech
database in such a way that it allows a realistic rendition of
unseen input text. The two main changes to our system,
compared to previous submissions, are the inclusion of an
HMM-based acoustic prosody model, and the automatic

training of context-dependent target cost weights. These
weights are estimated for each individual target during
synthesis, and depend on the linguistic features of these targets
which encompass their broader linguistic context. Another
new aspect of our synthesizer is the ability to synthesize
Mandarin Chinese speech. Its evaluation helps us assess the
quality of our synthesizer for languages unfamiliar to the voice
developers. Evaluation results and possible improvements to

our synthesizer are also discussed.

Index Terms: speech synthesis, unit selection, weight

training, evaluation

1. Introduction

The Blizzard Challenge is a yearly speech synthesis challenge
to evaluate auditory speech synthesis on common data. For
UK English, two speech databases were provided this year: a
large database (RJS) consisting of about 4000 sentences, and a
smaller one (Roger), which was also used in previous

challenges and which is based on the ARCTIC corpus [3]. A
version of the RJS database with a 48 kHz sampling rate was
also provided by the Blizzard organizers. The other databases
were only available with a 16 kHz sampling rate.

The VUB team has already participated in previous
challenges with its DSSP synthesizer (2008 [1], 2009 [2]).
This synthesizer is a unit selection-based synthesizer that uses
non-uniform units (phrases, words, syllables and diphones or

phones). The same UK English front-end as last year‟s
challenge has been used for the UK English voices. In this
paper, we focus mainly on the changes we made to our
synthesizer. In contrast to our previous entries, this years‟
entry also includes Mandarin Chinese voices. Although this is
a language that we are quite unfamiliar with, it was still
possible to produce the two required Mandarin voices thanks
to the supplied HTS labels for Mandarin, which provided both

segmentation and linguistics features. This illustrates the
ability of our synthesizer to support new languages relatively
easily. Both Mandarin voices were based on the same
database, except that only a subset of the database (800
sentences) was used for one of them.

This paper is structured as follows. In section 2 we give an
overview of the voice building process of the English voices.
In section 3 we describe the differences between the Mandarin

and English voices and how the Mandarin voices were build.

Results and discussion of the Blizzard Challenge evaluation
are given in section 4. Section 5 concludes our paper.

2. Voice building

Data-driven speech synthesis, such as unit selection, requires a
large speech database (at least 1 hour; up to 6 hours of speech
and more) in order to produce high-quality synthesized speech.
This large amount of high-quality speech from a single
speaker is needed to train various aspects of the synthesizer,
such as prosody models and acoustic models for segmentation.
By using the speech database as effectively as possible, the

synthesized speech can become closer to the original. This
approach is also one of the main characteristics of the DSSP
synthesizer. As most of the training algorithms require little or
no human input, the construction of a new voice for our
synthesizer is largely automated. Our voice building process
can be summarized as follows. Firstly, the speech database is
labeled and segmented, and acoustic features such as MFCC‟s,
f0 and energy are calculated for each utterance of the database.

These features are used, for example, to compute the join cost.
Secondly, based on the labeled pauses in the database and
linguistic features extracted from the text transcription of the
utterances in the database, a silence and phrase break
prediction model is trained [1] (this model is part of the
synthesizer‟s front-end). Each segment (i.e. each phone) of the
database is labeled with various linguistic features. These
features are used to generate a multi-level segmentation of

each utterance: each utterance is segmented into phrases,
words, syllables and phones. The next step is to train prosody
models and trainable target and join costs. Finally, the voice
needs to be tuned by choosing appropriate synthesis
parameters, such as the target and join cost weights. In the
remainder of this section, we focus in more detail on some of
these aspects.

2.1. Segmentation

Accurate segmentation is a crucial aspect of building a high
quality voice. Our approach is to use the speech database and
the corresponding text to train acoustic models for an HMM
forced aligner, and to use these models to segment and label
the database. For this year‟s challenge, the organizers provided
also a manually corrected segmentation for the Roger voice.

Although it would be interesting to know the difference in
terms of synthesis quality between an automatically generated
segmentation and a manually corrected version, due to timing
constraints we were unable to build a version of the Roger
voice using the manually corrected segmentation.

Like in last year‟s submission, we used the open-source
speech recognition toolkit SPRAAK [4] to segment and label
the utterances. A standard 5-state left-to-right context-

independent phone model was used, with no skip states.
Speech was divided into 25 ms frames with 5 ms frame-shift.

For each frame, 12 MFCC‟s and their first and second order
derivatives were extracted. The acoustic models generated for
last year‟s Roger submission, were used to bootstrap the
acoustic model training. Based on the orthographic
transcriptions and a lexicon, input files for the segmentation

algorithm are created automatically. Utterances with out-of-
vocabulary words are discarded and are not used in the rest of
the voice building process. These words and their
corresponding utterances are listed, so the voice developer can
opt to manually add the missing entries, if necessary. Words
having multiple pronunciations are supported, and the most
likely pronunciation is automatically selected.

2.2. Prosody models

In previous versions of our synthesizer, the prosody was not
predicted explicitly, but described in terms of several symbolic
(linguistic) features, such as lexical stress, part-of-speech, etc.
Acoustic prosody models use those features to predict the
prosody in terms of acoustic parameters, such as duration and
f0. Although current models are not perfect, the generated

prosody is usually quite smooth and stable, and often
corresponds to an acceptable rendition of the input text. Also,
using predicted acoustic targets in unit selection might reduce
the number of weights which needs to be set, as fewer acoustic
target cost functions are needed to describe the prosody than
when using symbolic target cost functions. Obviously, the
accuracy of prosody models and the variability of natural
speech should be taken into account when using the predicted

prosody as the target prosody. Our system uses an HMM-
based prosody model. We predict duration and f0, but the
system can easily be extended to other acoustic features.

In order to train the prosody model, each phone of the
database should be segmented into N states. In our case N=5
and the segmentation was obtained using speaker-dependent
HMM models, generated by HTS [5]. State durations are
predicted for each phone of the database using the symbolic

features of the phone as input. The predicted durations for a
single phone are scaled linearly to match the actual duration of
the phone and each phone of the database is split into N states.
The HMM forced-aligner which was used to segment and
label the database could also have provided us with a
segmentation into states, such that it would not have been
necessary to train HTS models. However, since in SPRAAK
only spectral information is taken into account, this

segmentation might not be as suitable to train prosody models
as HTS.

The questions that are used to split the decision trees of the
prosody models are generated automatically based on the
symbolic features and values present in the training database.
The first step of the actual training process is to train duration
models, which results in N decision trees, one for each state.
Mean and standard deviation are calculated for each
phone/state combination and z-scores are calculated for all

states in the database. These z-scores and the linguistic
features of the corresponding phone are used to train the
decision trees. As these are standard regression trees [6], we
use Wagon, part of the Edinburgh Speech Tools, for training.
While synthesizing, the duration of each state can be predicted
by obtaining the z-scores and the mean and standard deviation
of the corresponding phone/state combination. The total
duration of a particular phone is the sum of its state durations.

The duration models are used to obtain a second segmentation
of the database in states, which is used in further training.

The next part of the training process consists of training
the f0 models. The database is analyzed using STRAIGHT [7]
in order to calculate f0 and voiced/unvoiced information for

each frame. A frame-shift of 5ms was used. While
synthesizing, we need to determine whether a state is voiced or
not. Therefore, classification trees [6] are being used. For each
of the N states, a classification tree is trained with the
voiced/unvoiced information of the frames of the training

database as input. The voiced frames are used to train
regression trees with Wagon, with log f0 and the
corresponding linguistic features as input. The leaf nodes of
the generated trees are expanded with the mean and standard
deviation of the delta and delta-delta log f0 of the clustered
states. The f0 contour is calculated in 5 ms steps in a similar
fashion as in [8], using dynamic features (delta‟s and delta-
delta‟s) and global variance.

 Roger RJS

 HTS Proposed HTS Proposed

RMSE 0.0319 0.0257 0.0294 0.0246

MAE 0.0231 0.0185 0.0219 0.0179

Corr. 0.735 0.843 0.753 0.833

 Table 1. Evaluation of the duration models for the
Roger and RJS voices.

 Roger RJS

 HTS Proposed HTS Proposed

RMSE 0.184 0.168 0.177 0.155

MAE 0.0935 0.0830 0.106 0.0966

Corr. 0.476 0.508 0.512 0.543

U/V 20.4 % 18.9 % 14.3 % 12.2 %

Table 2. Evaluation of the f0 models for the Roger and
RJS voices.

The validity of our prosody model was tested in an initial
evaluation and compared to the standard HTS training and
prosody generation using hts_engine (both using default
settings). The first 50 utterances of the RJS and Roger voices

were used as a test set, and discarded from the training. The
stop factor is a parameter that controls the size of the decision
trees by indicating the minimum amount of training samples
that are clustered in a single leaf node and was optimized by
trial and error. A rather small stop size was found to give the
best results for the duration models (stop size = 10). A much
larger value was needed for the f0 models (stop size = 150 and
200 for the Roger and RJS voices, respectively). The same

factor was used for the voiced/unvoiced classification trees as
for the log f0 regression trees. Evaluation was performed by
calculating the root mean square error (RMSE), mean absolute
error (MAE), and correlation between the predicted values and
the actual values found in the test set (Corr.). For duration,
segmental duration (i.e. phone duration) was evaluated. For
log f0, corresponding frames were found by linear scaling of
the target and predicted contours. Only those instances where

the predicted and target frames are both voiced were taken into
account, but the percentage of frames which are incorrectly
classified as voiced or unvoiced was also calculated (U/V
error). Results are shown in tables 1 and 2. Although the
proposed models are not that complex, an improvement over
the baseline can be seen for both the duration and the f0
prediction. Similar improvements have been found with other
voices we build (e.g. Mandarin Chinese voices, CMU Arctic

voices …). The improvements in terms of duration are most
likely caused by the use of z-scores, while the slightly better f0
contour prediction, compared to the multi-space probability
distribution HMM used in HTS, is probably due to a slightly
better voiced/unvoiced classification. Further improvements
can probably be made by using different stop factors for the

training of the unvoiced/voiced classification and the log f0
regression trees and by incorporating dynamic features (delta‟s
and delta-delta‟s) in the construction of the log f0 regression
trees.

2.3. Target and join costs

Our system supports several types of target costs, such as costs
based on symbolic features, acoustic features or statistical
models. All of these types of costs were used in the
construction of the submitted voices. The following symbolic
target costs are used: next and previous phone, position of

word in phrase, position of syllable in word, part-of-speech,
punctuation and syllabic stress. The acoustic costs are based
on the predicted segmental durations and f0 contour, using
either an absolute Euclidean distance or a Euclidean distance
between relative values (in terms of the predicted target
values). Furthermore, two statistical costs are used, estimating
the likelihood of segmental durations and f0 from the same
HMM models that were used to determine the target prosody.
As all these target costs have different ranges of values, a

scaling factor is computed for each target cost. This scaling
factor is the 95th percentile of the values for the non-symbolic
costs; as the symbolic costs are either 0 or 1, they do not need
scaling.

The same statistical join cost was used as last year‟s
submission [4]; this cost models the likelihood of acoustic
differences at join boundaries. The weight of this cost was
tuned by trial and error, through iterative listening.

Figure 1: Illustration of the context-dependent weight
for the target cost function “duration” throughout the
sentence “Throughout the act clothes came off”, in

which the targets correspond to phones. Notice the
different values of the weight for the different
instances of the phones /#/, /k/ and /t/.

2.4. Weight training

One of the key challenges of optimizing a unit selection voice
is obtaining suitable target cost weights. Different weight
values are needed because the cost functions are not all of
equal importance, i.e. some may influence the synthesis
quality more than others. Typically, these weights are trained
manually (e.g. using expert knowledge or iterative listening

experiments). One of the reasons that manual training is not
that straight-forward and can be quite time-consuming, is that
these weights not only depend on the particular target cost
functions used, but also partly on the targets themselves. Some
examples of these effects are given in [9], for example the
influence of /r/ before and after vowels, and the increased
sensitivity of sonorants to position and promince compared to
non-sonorants. Also, the quality of a particular target cost

function might not be constant. For instance, some target costs
are calculated using predicted acoustic parameters. When
these predicted parameters are less reliable or accurate, the

weight of the corresponding component of the target cost
should be lowered. These examples suggest that, in order to
yield the best possible synthesis quality, each individual target
should receive a specific set of weights, optimized for that
particular target. As targets are typically described in terms of

linguistic features which do not only incorporate the phonemic
sequence, but also the broader linguistic context of these
features, we call this particular type of weights, context-
dependent weights. An example of such weights for the target
cost function that accounts for absolute duration differences, is
shown in figure 1.

In order to obtain different sets of weights for different
targets, we can cluster the targets and train a set of weights for

each cluster, e.g. one for each individual (di)phone. As these
clusters need to be specified beforehand, it is not clear how to
choose an optimal set of clusters manually. A better solution is
to generate these clusters dynamically as in [10] or [11]: the
clustering is performed by constructing a decision tree
containing phonetic questions about the targets. For each of
the targets clusters - these correspond to the leaf nodes of the
decision tree - a set of weights is trained. The broader context

of a particular target, described in terms of linguistic features,
is, however, ignored. Incorporating this broader context, or
even adding additional linguistic information about the targets
(e.g. lexical stress …) in the constructing of the decision tree
increases the computation time tremendously.

This is one of the reasons why our approach works the
other way around. Firstly, an automated weight tuning
algorithm is used to generate optimal weight sets for each unit

in the training database. Secondly, these weights are clustered
using decision trees. This weight training framework is quite
flexible in the sense that it allows experimenting with several
weight training algorithms, clustering algorithms and objective
acoustic distance measures. Objective acoustic distance
measures are needed for fully automatic weight training, since
we need to know which units are closer to each other.
Although none existing measure matches human perception
perfectly, using only objective measures has the advantage that

more training material can be taken into account which
increases the robustness of the weight training.

An optimized weight set for a particular speech unit can be
calculated by treating this unit as the target, and selecting a set
of units sharing the same phonemic sequence as candidate
units. An objective distance measure can then used to calculate
the acoustic distances between the target unit and the
candidate units. These distances, in combination with the

target costs between the target and the candidate units, can be
used as input to an automated weight tuning algorithm to
generate the optimal target cost weights.

As we needed to finish building the voices for this year‟s
Challenge on time, our algorithms were adapted to speed up
the training process. Firstly, as there are typically many
instances of each phoneme1 in the database, we only use a
subset of these instances in order to speed up the weight

training. This subset is selected by uniformly sampling the
phoneme instances based on their acoustic distance with the
target unit. As such, a similar but smaller distribution of

1 The smallest units that our system is able to select are
demiphone-sized units. While synthesizing, target costs are

calculated for each (demi)phone of a particular unit. As the
two halves of a particular target phone share linguistic
features, context-dependent weights have to be predicted for
each phone of the target utterance. This implies that the target
units used for the weight training will correspond to phone-
sized units.

acoustic distances is obtained, which reduces the
computational load significantly while maintaining the quality
of the trained weights. In the remainder of this section, the
term „selected units‟ refers to this sampled subset. The
optimal size of a subset is dependent on the amount of weights

that need to be trained (in our case 100 units). Secondly, we
also needed to limit the amount of units that were used as
target unit. For each type of phoneme, at most M units were
used as target units for which an optimal set of weights was
trained. Obviously, using fewer target units for weight training
may decrease the synthesis quality. For the Roger and RJS
voices, this maximum was set to 200 and 1000, respectively,
corresponding to 26.0% and 21.6% of the maximum amount

of units available for training in the respective databases. Note
that the first 50 utterances were discarded during the weight
training for evaluation.

2.4.1. Minimum selection error training

An important aspect of our weight training algorithm is the
algorithm that optimizes the weights for a given target unit. In

order to select the best sequence of units, it is important to
know whether a unit is better or worse compared to another
unit. Obviously, if the weighted sum of costs corresponds
perfectly to a perceptual distance, an ideal comparison can be
made, but in reality this is not the case. Errors that occur when
matching costs to perceptual distances cause an incorrect
ordering of the units, and thus in those cases a suboptimal
sequence of units will be selected. In practice, an acoustic

distance between two units is used instead of a perceptual
distance. If a unit is acoustically closer to the target than
another unit, this should be reflected in the weighted sums of
costs of those two units. The quality of a particular set of
weights W for a given target t can thus be measured by a
selection error serr(W,t), defined as

N

i

N

j
ji tWuuerrtWserr

1 1

),,,(),((1)

with N the number of selected units and err(ui,uj,W,t) an error
measure between two units ui and uj. Let ci be the weighted
sum of target costs of unit ui for the target t using weights W
and di = D(t, ui) an acoustic distance between the target and

unit ui. Then the error measure err(ui, uj, W) is set to 0 if
sign(ci - cj) = sign(di -dj), and equal to │di -dj│ otherwise.

The n weights for a given target unit can be iteratively
trained by greedy selection. The algorithm starts by using
default weights, i.e. all weights set to 1. By using the selection
error, we can measure the quality of a particular weight set. At
each iteration, we evaluate various weights sets, and keep the
one yielding the lowest error. Note that, each time only a

single weight value is modified. Iteration will stop if no
improvement can be found or if a predetermined maximum of
iterations is exceeded.

As the weighted sum of target costs can be seen as a
prediction of the acoustic distance between a unit and its
target, the weights are scaled by a constant scaling factor f,
calculated by minimizing

N

i
ii dcf

1

2)((2)

with N the number of selected units, and ci and di as defined
above.

2.4.2. Weights clustering

In order to generalize weights for unseen targets, the trained
weights are clustered using decision trees. For each target cost
function, a separate tree could be build and each of its leaf
nodes would contains a single weight. The most straight-
forward approach would be to train each tree individually,

which can be done using standard regression tree training [12].
However, as the weights are not independent (since they are
trained together), we propose to jointly cluster the weights.
Standard techniques can be used to build the decision tree; at
each split, the best question is chosen in order to minimize
impurity. The splitting stops if no improvement can be found
or if the number of elements in a cluster would become
smaller than a given stop size. In our case, this impurity is
based on the selection error (Eq. 1) and can be calculated as

follows. Let L be the number of target units in a cluster.
Hence, each cluster contains L optimized sets of weights. The
quality of a set of weights for a given target unit can be
estimated by the selection error. Let Wbest be the set of weights
which has the lowest average selection error over all target
units. The impurity can then be calculated as

)(bestbestL (3)

with µbest the mean and σbest the standard deviation of the L

selection errors calculated using Wbest and the L target units. α
a parameter that needs to be set (e.g. α = 2). Thus, the impurity
can be considered an estimate of the upper bound of the sums
of errors. After constructing this tree, each leaf node needs to
contain a single set of weights instead of L, as each target
needs a single set of weights during synthesis. The following
approaches are implemented:

 For each target cost, calculate the average weights over

all weight sets of this node.

 Select the best set of weights Wbest, that gives the lowest
average selection error.

For the submitted voices, the following linguistic features

were taken into account during the decision tree construction:
current, previous and next phone, syllabic stress, part-of-
speech, syllable position in word, word position in utterance
and phrase, number of stressed and unstressed syllables of
current word, punctuation, whether the current word is a

content word, and whether the current word is capitalized.
In order to select the best clustering parameters, the 50

first sentences of each voice were used as a test set. These best
settings and corresponding weight trees were used in the
further construction of the voice. Table 3 lists the average
selection errors on the test sets of the RJS voice, for the two
clustering approaches and various stop sizes (that control the
size of the decision trees). Selecting the best set of weights to

represent the weights of a given cluster of target units yields
better results compared to averaging the weights. A large stop
size was necessary for the best results; this can probably be
explained by the fact that we were unable to use all target units
available in the database for training the weights. Although not
listed here, we also tested whether training separate weight
decision trees for each individual target cost yielded better
performance compared to the joint clustering, but this resulted
in errors roughly comparable to the ones obtained by

averaging the weights in a single cluster.

2.4.3. Acoustic distances

When comparing two units acoustically, several distinct
properties of the acoustic signals should be taken into account,
such as duration, f0, spectrum, energy … As differences in

these properties can be measured by acoustic distance
measures, they can be combined in a single distance measure
using, for example, the weighted sum of the individual
measures. As the construction and optimization of this single
combined measure would require human input (e.g. subjective

experiments), we choose to use a different approach that is
fully automatic. We use M acoustic distance measures to train
several sets of context-dependent weights, one set for each
distance measure. We need to combine these different sets of
“base” weights, as one single set of weights must be used
during synthesis. We assume that the optimal set of weights
for a specific target is a linear combination of its base weights
sets. The latter weights are termed combination weights and

are further explained at the end of this section.

Table 3. Average selection errors for the test set of the
RJS voice. In comparison, when default weights (all

weights set to 1) are used, the average selection errors
are 512.2, 468.5 and 402.9, for duration, f0 and

spectrum, respectively.

In our case, acoustic distance measures for duration, (log) f0
and spectrum were used. Let t be the unit corresponding to the
target context and u a unit from the selected unit set. Let durt
and duru be the durations of the target and the selected unit,
respectively. The duration distance Ddur(t, u) is then calculated

as:

t

ut
dur

dur

durdur
utD

),((4)

The other distances Df0(t, u) and Dspec(t, u) which take into
account (log) f0 and spectrum, respectively, are calculated as
the relative root mean squared error. Let fj and gj be the values
of an acoustic feature for the jth frame of the target unit and its
corresponding frame in the selected unit, as found by straight-
forward linear time scaling, respectively. Di(t,u) can then be
calculated as

N

j
j

jj

i

f

gf

N
utD

1
2

2

1
),((5)

with N the number of frames of the target unit. In our system,
features are calculated each 5 milliseconds. 12 MFCCs
including the 0th coefficient are used for the spectral distance
measure. Unvoiced frames are discarded when calculating the
log F0 distance. The quality of the weight training can be

increased if a ceiling parameter is used for the distance
measure. In general, units which have a large acoustic distance
are all bad; in those cases, the exact value of the distance is of
less importance. Currently, the ceiling parameter is calculated
as the median of the distance of the selected units.

The following algorithm is used to find optimal
combination weights ci for M sets of base context-dependent
weights Wi. As many equivalent solutions are possible, we add
the constraints that the sum of these combination weights

should be equal to 1 and that 0 ≤ ci ≤ 1. We use a small
number of held-out utterances from the database (e.g. 10
utterances) and generate M context-dependent weights sets for
each phone-sized unit of these utterances, which are used to
calculated M² average selection errors sij for each combination

of distance measure Di and weight set Wj. These average
selection errors indicate the quality of a particular set of
weights using a particular acoustic distance measure. We want
that the optimal set of weights for a given target, result in
better weights in terms of all acoustic properties, compared to,
for example, setting all weights to 1. Therefore, a numeric
minimization algorithm (e.g. a conjugate gradient algorithm)
can be used to minimize the following function gm while

taking into account the previously defined constraints,
resulting in optimized combination weights :

 gm = max(g1, g2, … gM) (6)

 i

M

j
ijji fscg

1

2)((7)

with fi the average selection errors calculated using all weights
set to 1 using the ith distance measure.

3. Mandarin Synthesis

Since a segmentation and HTS labels were provided for the
Mandarin Chinese database, we used those to build our
Mandarin voices. Therefore, we did not need to construct a
complete Mandarin Chinese front-end. As such, we were able
to adapt our system for Mandarin Chinese and to build our

first Mandarin voices, within a single week. None of the
members of our team was familiar with Mandarin speech.

Each utterance of the provided speech database is
segmented into initials and finals, which correspond to the
initial and final part of a Mandarin syllable: the initial part
consists of the initial consonant of the syllable, while the final
part consists of a combination of consonants and vowels.
Similarly to the UK English voices, several types of units were

used (words, syllables) but the basic units (i.e. smallest
selectable units) differ: for Mandarin Chinese, these units
correspond to di-syllable parts which start in the middle of an
initial or final, and end in the middle of the next initial or final,
similarly to diphones. Each initial and final was labeled with
the linguistic features that were extracted from the HTS labels:
pinyin, tone, part-of-speech, position in syllable and prosodic
structure features. Information (pinyin, tone, part-of-speech)

about the immediately neighboring initial or finals is also
stored. The tone and part-of-speech features enabled us to
group the initials and finals in syllables and words, necessary
for multilevel unit selection. Each syllable was labeled in
terms of pinyin + tone, and each word as the combination of
its syllable labels.

A similar set of target and join costs were used as in the
UK English voices, except for the symbolic target costs: costs

using next/previous syllable part, next/current/previous tone
and next/current/previous part-of-speech were included
instead. The prosody models and weights were trained
similarly as described in the previous section.

4. Evaluation and discussion

This year‟s challenge featured the same hub and spoke design
as previous editions, in which the hub tasks correspond to the
required voices, while the spoke tasks are optional. We
submitted voices for all tasks, with the exception of the task in
which voices needed to be build based on only 100 sentences

(tasks ES1 and MS1). For the tasks in which noise was added

Stop 5 10 20 50 100 200

Dur.
Avg. 400.4 397.0 396.1 397.1 397.4 398.8

Best 390.6 385.0 379.0 373.0 372.3 383.2

F0
Avg. 258.2 255.9 255.2 255.0 255.4 257.4

Best 235.6 230.7 228.1 225.9 224.3 224.2

Spec.
Avg. 381.9 382.4 383.5 384.8 385.2 385.7

Best 379.9 378.5 376.7 375.9 376.0 376.1

to the speech (tasks ES2 and MS2), we submitted the same
voices as for tasks EH1 (using the RJS database) and MH1
(using the full Mandarin database). Our system is indicated
with the letter P, on the overview plots on the festvox site [12].

As our system is based on unit selection without any signal

modification, our voices sound quite similar to the target
speaker. Overall, both UK English voices performed
reasonably well, and are statistically similar to the Festival
benchmark system which corresponds to CSTR‟s 2007
Blizzard entry. Mean naturalness scores of the two hub voices
EH1 and EH2 are 3.0 and 3.1, respectively. Surprisingly, the
use of a larger database did not seem to improve synthesis
quality, but this may be explained by the use of relatively

fewer target units during weight training (hence potentially
suboptimal weights). Using the 48kHz version of the RJS
database did not seem to improve quality (mean naturalness
scores of voice ES3 was 2.8). Using a higher sampling rate
could reveal some of artifacts (e.g. join artifacts) which were
masked by using a lower sampling rate such as the default
16kHz.

The use of the same UK English Roger database as in the

last two editions of the Blizzard Challenge, in combination
with the benchmark voices, allows us to compare this year‟s
results to previous versions of our system. Table 3 lists
average naturalness scores and average word error rates of
these voices: these results seem to suggest that (some)
progress has been made to create more natural, easier to
understand voices.

 Naturalness Word error rate (%)

Year DSSP Fest. HTS DSSP Fest. HTS

2008 2.9 3.1 3.0 45 40 31

2009 2.5 2.9 3.2 28 21 16

2010 3.1 2.9 2.7 29 23 20

Table 4. Average naturalness scores and average word
error rate using the Roger voice of our system, and
Festival (unit selection) and HTS (HMM synthesis)

benchmark systems.

Performance of the Mandarin voices was almost similar to the
performance of the UK English voices (e.g. the mean
naturalness scores of the two hub Mandarin voices was 3.0 and
2.7, respectively). Manual tuning of the join cost weight

proved to be quite challenging, and the value of this parameter
can probably be improved. Furthermore, analysis of the
synthesized sentences revealed that occasionally short
repetitions or deletions were present at the join boundaries.
This can be explained by the type of units we were using (di-
syllable parts) of which the cut-points were set to the middle
of an initial or final. Ideally, these would occur at the middle
of the center phone, but this is not always the case due to

variations of the phone durations within an initial or final. This
may have had an effect on the intelligibility of the Mandarin
voices.

Obviously, when noise is added to the speech, the
intelligibility becomes smaller and the results of this
evaluation (tasks ES2 and MH2) for our voice were consistent
with the results for clean speech (without additive noise).

5. Conclusions

In this paper we gave an overview of our 2010 Blizzard

Challenge submission, and gave some insights in the details of
our current voice building and tuning procedures. Overall, our
participation to the Blizzard challenge proved to be quite
valuable, leading among other things to the development of

our first Mandarin voices. The evaluation of the submitted UK
English voices indicates similar quality as the Festival
benchmark system (CSTR‟s 2007 Blizzard entry). The results
of our Mandarin voices show reasonable quality, especially
considering that this was our first attempt at building a

Mandarin voice, and in view of our limited experience with
Mandarin or other tonal languages. This confirms the ability of
our system to support new languages quickly.

Our system still offers room for improvement. As the
complexity of the voice building procedure increases due to
the training of HMM prosody models and the target cost
weight tuning, for example, the amount of time required to
build a single voice becomes significantly longer. Therefore,

in order to complete all voices on time, we had to cut some
corners and were forced to use less optimal settings, e.g.
during the training of target cost weights. We believe the
quality of these weights can be further improved and we are
currently experimenting with other distance measures and
clustering techniques. The join cost weight still requires
manual tuning and this proved to be quite difficult for the
Mandarin voices. Also, the cut-points we used for these voices

were not optimal, leading to occasional short repetitions or
deletions at the join boundaries. A more detailed segmentation
(i.e. using phones) or joining at initial/final boundaries only,
could potentially solve these problems.

6. Acknowledgement

The research reported on in this paper was partly supported by
the projects IWT-SPACE, IBBT-SEGA and EC FP7 ALIZ-E
(FP7-ICT-248116).

7. References

[1] Latacz, L., Kong, Y. O., Mattheyses, W. and Verhelst W., "An

overview of the VUB Entry for the 2008 Blizzard Challenge",

Proc. of the 2008 Blizzard Challenge Workshop, 2008.

[2] Latacz, L., Mattheyses, W. and Verhelst W., "The VUB Blizzard

2009 Entry", Proc. of the 2009 Blizzard Challenge Workshop,

2009.

[3] Kominek, J. and Black, A.W., “CMU ARCTIC databases for

speech synthesis,” Tech. Rep. CMU-LTI-03-177, Carnegie

Mellon University, 2003

[4] http://www.spraak.org

[5] Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black,

A.W. and Tokuda, K., “The HMM-based speech synthesis

system version 2.0”, Proc. of ISCA SSW6, Bonn, Germany,

Aug. 2007.

[6] Breiman, L. et al., “Classification and Regression Trees”

Wadsworth & Brooks, Monterey, California, 1984.

[7] Kawahara, H., Masuda-Katsuse, I., and Cheveigne, A.,

“Restructuring speech representations using a pitch-adaptive

time-frequency smoothing and an instantaneous-frequency-

based f0 extraction: possible role of a repetitive structure in

sounds,” Speech Communication, vol. 27, pp. 187–207, 1999

[8] Toda, T. and Tokuda, K., “Speech parameter generation

algorithm considering global variance for HMM-based speech

synthesis,” in Proc. of Eurospeech, 2005

[9] Coorman, G., Fackrell, J., Rutten, P., and Van Coile, B.,

"Segment selection in the L&h Realspeak laboratory TTS

system", Proc. ICSLP-2000, vol.2, 395-398, 2000

[10] Meron, Y., and Hirose, K., “Efficient weight training for

selection based synthesis”, Proc. Eurospeech ‟99, Vol. 5 pp.

2319–2322, 1999

[11] Alías, F., and Llorá, X. “Evolutionary weight tuning based on

diphone pairs for unit selection speech synthesis”, Proc.

Eurospeech „03, Vol. 2, pp. 1333–1336., 2003

[12] http://festvox.org/blizzard/blizzard2010.html

