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Abstract
This paper describes NTNU’s entry for the Blizzard Challenge
2010. Our system is a conceptually simple variation of an
HMM-based unit selection system, which uses diphones as the
basic unit and employs a combined selection of units and their
join points. The evaluation results of the Blizzard Challenge
2010 show that the system performs well when compared with
the other systems.

1. Introduction
A key goal for a text-to-speech development system is to pro-
vide means for building voices having maximum quality while
requiring minimum human effort. It should be able to pro-
duce new voices automatically from as little input as possible,
typically a limited set of voice recordings accompanied by a
manuscript. It should also ensure consistent high quality speech
output even when the input data contains anomalies. HMM-
based speech synthesis [1] has proven itself in terms of meeting
the requirements just mentioned. It is inherently insensitive to
the limited number of errors related to automatic text analysis or
speaker artefacts you would expect to find in any training data
set. Also, the output speech quality is highly consistent. Unit
selection is on the other hand in general more sensitive to the
quality of the source data. Errors present in metadata combined
with the problem of joining speech segments that may have a
poor perceptual fit may lead to unnatural or even incomprehen-
sible speech output. In the best case however, the quality is as
good as it gets.

What we would like is a system that provides the consis-
tent quality of the HMM-based synthesis and the crisp best-case
sound quality of the unit selection synthesis. The IBM Concate-
native Speech Synthesis System based on work by Donovan et
al. described in [2, 3] is interesting in that it is closely related
to HMM-based synthesis. Decision trees, resulting from model
training, are used to identify HMM state-sized segment candi-
date clusters, and basic unit selection principles are used to se-
lect one candidate from each cluster. In HMM-based synthesis,
the statistics of the clusters are used to generate speech. Vari-
ous other related schemes have been proposed and presented in
previous work and Blizzard Challenge entries. Differences be-
tween systems include choice of basic unit, model and feature
vector configuration and how the models are used in the selec-
tion algorithm. In the CMU entry[4] from 2007, a 3-state con-
figuration is used with feature vectors composed of 25 MFCC-
coefficients augmented with F0. Diphones, with backoff to
half-phones, is used as the basic unit. The system does unit se-
lection based on target vectors generated by CLUSTERGEN. In
the USTC system[5] from 2009, feature vectors consist of mel-
cepstrum and F0. A 5-state left-to-right model with no skip is
used, but the unit selection is geared towards phone-sized units.
This system also applies a Kullback-Leibler divergence based

pre-selection of candidates. The MARY TTS system[6] pre-
sented in 2008, inspired by the USTC system, uses half-phones
as the basic unit, and yet another system[7] focuses on using
frame-sized units.

The work presented in this article results from experiments
related to combining HMM-based synthesis with unit selection.
As a starting point, we have focused on using HTS-models for
selecting units, which relates our system to the mentioned sys-
tems.

The rest of the paper is organized as follows. First, a high-
level system description is given, followed by section 3, which
describes the data used by the synthesizer and how a voice is
built. In section 4 the run-time synthesizer is described, fol-
lowed by section 5 which discusses some system details, issues
and specifics involved when used on the Blizzard Challenge
2010 dataset, along with evaluation results.

2. System overview

TRAINING DATA INPUT TEXT

HTS 
training

Analysis

TTS frontend

Target model 
construction

Candidate list 
construction

Selection & 
boundary decision

Waveform 
concatenation

State 
alignment

Voice 
database

Figure 1: System overview.

Figure 1 illustrates the major components of the unit selec-
tion system. The task of the training stage is to prepare data,
train models and align speech. During run-time synthesis, a
frontend enriches the input text with features and uses this to
extract a sequence of target models from the model set. For
each target, a set of diphone-sized candidates is found and sent
to the unit selection component. In addition to finding the spe-
cific candidate to use for each target, the selection component
considers a number of alternative join positions and selects the
one that results in the lowest cost. The final step of the syn-
thesis stage is to produce a waveform output by extracting and
concatenating the segments found.



3. Voice building
The voice database consists of an aligned and pitch marked
waveform database, a set of Hidden Semi-Markov Models
(HSMMs)[8] and the set of feature vectors used to train the
models. Given a text-to-speech frontend, an orthographic
manuscript and a corresponding set of recordings, the building
process is fully automated.

The first step is to convert the manuscript into a richer rep-
resentation using the frontend. An HMM-based system, similar
to the one described in [9], is then used to phonemically align
the speech. This is followed by a refinement step in which mul-
tiple pronunciation variants are considered.

Having found the most promising transcription and the cor-
responding alignment, a set of clustered HSMMs is trained us-
ing the HTS-demo scripts[10]. A conventional 5 state left-
to-right model topology with no skip is used. Feature vectors
consist of 25 mel-cepstral coefficients including the 0’th and
logF0 along with delta and delta-delta parameters. Each vector
is constructed from a 25ms Blackman-windowed frame every
5ms. Fundamental frequency and pitch marks are computed
using epochs and get f0 from ESPS. The acoustic and F0

coefficients are separated into different data streams and mod-
elled by continuous and multi-space distributions[11] respec-
tively. Clustering is done separately for each state, and the data
streams and duration are clustered independently. The question
set used for clustering is based on the one defined in HTS-demo,
and includes questions about phonetic and intonational context.

The end result of the model training is a clustered HSMM
set and decision trees for acoustic, F0 and duration models, and
are used heavily in the run-time synthesis.

A final forced state alignment is done using the trained
HSMMs and HVite from the HTK toolset[12], which is mod-
ified in order to take into account the explicit duration models
built into the models. This enables us to associate each state-
sized segment with a specific model.

4. Run-time synthesis
The unit selection run-time system accepts an orthographic
text, which is converted into an enriched label sequence by the
front-end. This is used to construct a corresponding target se-
quence t = {t1, . . . tL} in which each target, ti, is associated
with a label, its corresponding HSMM, Φ(ti) and an identifier,
name(ti), which is used to bootstrap the candidate search space
for the given label. The model is found by applying the decision
trees described in section 3, and in the current implementation
the name is the diphone identity of the target, i.e. the current
and previous phoneme.

The speech database can be considered to be a large con-
tiguous array, p = {p1, . . . , pN}, ofN phone-sized units. Each
unit is associated with a trained model, Φ(pn), a waveform seg-
ment, and the corresponding feature vectors. A diphone candi-
date is thus associated with two phone-units: un = (pn−1, pn),
and the cost of selecting a sequence, uk, of candidate units is
given by

C(uk, t) =

LX
i=1

Ctarget(uki , ti) +

L−1X
i=1

Cjoin(uki , uki+1), (1)

The well-known Viterbi algorithm is used to find the sequence,
u∗k, such that

u∗k = arg min
uk

C(uk, t) (2)

4.1. Building the candidate list

The candidate list p̂(i) for a given target, ti is built by a two-
stage process, according to

p̂(i) = prune(lookup(ti))). (3)

First, all units matching the diphone identity of the current tar-
get is extracted from the unit database, as given by the function

lookup(ti) = {pn : name(pn) = name(ti)} , (4)

with a back-off to phone matching in the case of missing di-
phones. The resulting set is possibly very large, and so a prun-
ing step is performed before going further. In order to do this,
the candidate list is first ordered using a sorting criterion that
tries to measure how well a candidate model, Φ(pn), matches
the target model, Φ(ti). A simple and easy-to-compute mea-
sure is the number of clustered streams that are shared between
the candidate and target models, as illustrated in figure 2. The
sorted list is then truncated at a pre-defined maximum size or
at the point where the computed value falls below some level
relative to the best candidate.
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mel F0
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mel F0
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Figure 2: Illustration of stream sharing for a 3-state/2-stream
model configuration. Here, the two streams of the last state are
not shared between the target and candidate models.

For each of the remaining candidates a target cost is com-
puted. Using the target model, we simply compute a weighted
log-likelihood of the mean-vector of the candidate’s model

Ctarget(p̂
(i)
k , ti) = −wtarget logP

“
µ(Φ(p̂

(i)
k ))|Φ(ti)

”
, (5)

where P (. . . ) represents a multi-space distribution[11] and
wtarget is a manually set weight. The target cost could have been
used as a sorting criterion for the task of candidate pruning, but
it is more computationally demanding. Experimentation also
suggested that the simple stream-counting scheme results in a
somewhat more lively speech output.

If a candidate’s natural successor in the database matches
the target sequence it is cached and considered as a possible
candidate for the next target, ti+1. For the current candidate list,
the list of previously cached extension candidates will be added
until a predefined maximum number of candidates is reached.

4.2. Computing the join cost and optimized join position

Two candidates may be joined at (automatically aligned) state
boundaries, but only one join per diphone is allowed. Given
models of S states and two units to be joined, uk = (pk−1, pk)
and um+1 = (pm, pm+1), the basic idea when considering a
join at state s is first to concatenate the feature vectors corre-
sponding to s first states of pk and the last S−s states of pm, as
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Figure 3: The illustration shows two units, uk = (pk−1, pk) and um+1 = (pm, pm+1), considered for joining, with a 3-state model
configuration. A join is allowed only at one of the state boundaries of the overlapping phone segments. The solid arrow illustrates a
selected join between state 2 and 3.

illustrated by figure 3. The delta and delta-delta features at the
join needs to be re-computed to reflect the discontinuity. Then,
the target model can be used to compute a cost based on the
likelihood of the combined feature vectors across all S states.

If the cost of joining the two units at state s is denoted
c(uk, um; s), the unit join cost is given by

C(uk, um) = c(uk, um; s∗) (6)

where s∗ is the state index that minimizes the cost

s∗ = arg min
s
c(uk, um; s) (7)

Explorative testing revealed a need for fine-tuning and so
the actual cost, c(uk, um; s), of joining the two units is a
weighted sum of the following components:

• Normalized likelihood of all but the last frame of the s
first states of pk

• Normalized likelihood of all but the first frame of the
S − s last states of pm

• Likelihood of the last frame of the s-th state of pk. The
delta and delta-delta coefficients for this frame are mod-
ified so that the join discontinuity is considered.

• Likelihood of the first frame of the s+ 1-th state of pm,
modified to reflect the join discontinuity.

• Likelihood of the duration of the first s states of pk

• Likelihood of the duration of the last S − s states of pm

• A simple penalty which considers the difference in dura-
tion of pk and pm before and after state s.

• Penalties for state durations if they are distant from the
model mean, relative to standard deviation.

The two penalties are added in order to encourage joining
units of similar durations and exclude outlier units, typically
related to errors done by the automatic voice building process.
If dleft(pk, s) denotes the duration of the first s states of pk, then
the duration difference cost is given by

wdurdiff
|dleft(pk, s)− dleft(pm, s)|

min(dleft(pk, s), dleft(pm, s))
(8)

where wdurdiff is a manually set weight. An equivalent cost is
added for the duration of the last S − s states. The duration
difference cost indirectly encourages unit continuity, since pk

and pm in that case are identical, which results in zero cost.
The duration model is multi-dimensional Gaussian

distribution[13], and the state duration penalty is implemented
by a simple modification to the log-likelihood computation so

that each term, fi is weighted by a function g(fi). If the i’th
term, fi is given by

fi =
(xi − µi)

2

σ2
i

, (9)

then the weighted term becomes

fig(fi) = fi

“
1 + wstatedur max

“
0,
p
fi − b

””2

, (10)

where wstatedur is the associated weight and b is a constant con-
trolling the amount of variation accepted with zero cost.

4.3. Unit concatenation

The selection system finds the join position in terms of fixed
rate frame boundaries and so the actual join point needs to be
refined. For this purpose we search for the pitch mark closest
to the given frame boundary and use a very simple time domain
overlap-add scheme to join the units. No pitch modification is
done, except for harmonizing a small number of pitch periods
around the join position.

No other speech modification is performed.

5. Evaluation
The Blizzard Challenge 2010 participants were invited to solve
a number of tasks, which differed in terms of speech database
sizes, noise conditions, sampling rate and language. For British
English, the following tasks were available:

• EH1: a 5 hour speech database of about 4000 sentences

• EH2: a 1 hour speech database of about 1000 sentences

• ES1: 100 sentences, a subset of EH2

• ES2: speech in noise task, using the same data as EH1

• ES3: higher sampling rate, using the same data as EH1

Ideally we would have liked to address all tasks except ES2
which, given the nature of our system, was out of reach. Unfor-
tunately, due to time issues we were only able to solve the EH1
task.

5.1. Implementation details and run-time issues

The system has just recently been developed, and tested on a
single Norwegian male speech database prior Blizzard. As de-
scribed in section 4, the unit selection algorithm uses a number
of heuristics and manually chosen weights. These were found
and set by the developers based on trial-and-error experiments
on the Norwegian database. A key goal in this process was to
make the system accept natural variation, but reject outliers pos-
sibly related to training data and automatic training methods.
No formal listening tests have been conducted.



Some experimentation with the Blizzard training data was
done and we found that the heuristics and weights based on the
Norwegian data were reasonable for the Blizzard data. This
suggests that the system is quite robust with respect to input
data, which is a very useful feature.

As we do not have a frontend for English, we used the al-
ready pre-processed utterances included in the Blizzard train-
ing and test data, with an automated transformation that merged
multiple consecutive pause labels into a single label. No other
work was done in order to improve the quality of the labels,
and so any errors possibly present went directly into the train-
ing process. Another implication of using the Blizzard-labels
were that it limited the set of label features used to construct
HTS-labels, which in turn affects the model clustering. The la-
bels were however quite rich with features and presumably well
suited for the task.

Since the run-time system uses the complete set of feature
vectors used for training the HSMM model set, the memory
footprint is very large. For the Blizzard dataset, the feature vec-
tors takes up about 1.2GB of data. At run-time, these data are
loaded into a RAM drive and, when adding memory require-
ments for the model set and metadata, the memory footprint
totals to about 2GB.

The unit selection algorithm, when applied on the 1597 ut-
terances in the Blizzard test set, runs 4.97 times faster than real-
time on a 2.66 GHz Mac Pro 1.1. When adding unit concate-
nation, the number is 3.79. This is not an impressive result, but
it shows that it should be possible to achieve acceptable per-
formance if optimizations are implemented, such as e.g. pre-
computing costs and candidate sets.

If the system is to be targeted towards home-users, both
memory footprint and real-time performance needs to be im-
proved. This was however not a factor when the system was
designed.

5.2. Evalutation results

The EH1 task was evaluated in terms of 1) similarity with orig-
inal speaker, 2) MOS scores for naturalness and 3) word error
rate, shown in figure 4, 5 and 6 respectively. Table 1 shows the
systems that are judged as not significantly different from our
system. System A identifies the natural speaker while B and C
represent two benchmark systems. Our system is identified by
T.

Similarity B F J M P U
MOS J
WER B C F G J L M N O P Q R U V

Table 1: Wilcoxon’s signed rank tests judge these systems as not
significantly different from our system T.

It is not surprising that the system has a strong similarity
with the natural speaker, as the box-plot in figure 4 indicates,
since we are doing plain unit selection without any signal pro-
cessing or compression. However, the significant difference
when compared with the natural voice tells us that we did not
succeed in making an indistinguishable synthetic replica of that
speaker. It should be noted that this is not the most important
design factor for us. We are more interested in a natural and
comprehensible voice than a direct copy of one specific person.

The MOS-scores for naturalness show that our system per-
forms well and, according to table 1, only system J is not sig-
nificantly different from ours. This tells us that the system does
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Figure 4: Similarity with original speaker – all listeners.

quite a good job at selecting units that fit well together. Again,
there is a gap to the original speaker.
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Figure 5: MOS scores for naturalness – all listeners.

In terms of word error rates, the system is judged not signif-
icantly different to most of the other systems, but significantly
different when compared with the original speaker. This means
that there is still issues that needs to be addressed. Our own
impression is that, even though the quality in many cases is
quite good, the generated speech still lack the consistency of
the HMM-based synthesis. A part of this discrepancy may be
attributed to sub-optimal cost functions, which for this system
was found by trial and error. A re-examination of the source
code revealed a bug related to the penalty added for outlier state-
durations; it actually penalized good candidates. After fixing
this we observed that some of the most audible errors vanished.
However, there are still major issues that need to be investi-
gated.
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Figure 6: SUS word error rates – all listeners.

6. Conclusions
This paper described the NTNU entry to the Blizzard Challenge
2010. The system is a result of experiments related to com-
bining HMM-based speech synthesis with unit selection, and is
described as a conceptually simple HMM-based unit selection
system, using flexible diphones with run-time optimized join
point decisions.

The evaluation results show that the system performs well
when compared with the other systems, but there is still a sig-
nificant gap when compared with the original speaker. Thus
improvements are needed in order to lessen the difference.
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