
Multilingual TTS System of Nokia Entry for Blizzard 2010

Bufan Zhang, Jari Alhonen, Yong Guan and Jilei Tian

Nokia Research Center, Beijing
{ext-bufan.zhang, jari.alhonen, ext-yong.guan,jilei.tian}@nokia.com

Abstract

In Nokia’s blizzard 2010 entry, we built the system with Nokia

multilingual text to speech front end system and two high

performance HTS backends. This MLTTS front end system

describes the design and implementation designed for

universal language coverage and a single code execution for

them all based on the assumption that there are more features

uniting world languages than differentiating them.

Index Terms: speech synthesis, multilingual TTS system,

HMM based speech synthesis system.

1. Introduction

Nokia MLTTS system describes the design and

implementation designed for universal language coverage (i.e.

can support any language and it's easy to add languages) and a

single code execution for them all based on the assumption

that there are more features uniting world languages than

differentiating them. The system has been tested with 12

languages belonging to five language families and four

different writing systems, and the time required for adding

new language support is down to 1-2 weeks work from one

person, assuming the availability of some resources.

In Nokia’s blizzard 2010 entry, we built the system with

Nokia multilingual text to speech front end and EMIME

project HTS back end and also the GlottHMM system by

Helsinki University. Specifically, we use the Mandarin and

British English front end in Multilingual TTS system for

Blizzard 2010.

2. Multilingual TTS front-end

It was decided a very simple method of adding language

support to the system would be to just drop a file with a

certain name in a certain directory. The common code of the

MLTTS system searches for such a language configuration file

and finds in its instructions how to deal with text in that

language. If the language is very regular, has low levels of

morphology and no other complications, it requires very little

in the way of configuration:

1. Character set so the language can be identified

easier,

2. a lexicon file, containing abbreviations and basic

numbers and any irregular pronunciations,

3. number rule that specifies how to expand larger

numbers,

4. syllable rule that specifies what abbreviations should

be read out letter by letter rather than as words,

5. list of allophones for the polyglot synthesis

described later in this paper, and

6. voices trained for the language.

While languages with this high level of regularity are rare,

most languages deviate only on subtle ways that can be solved

with some additional settings in absolute values or regular

expressions. For the more demanding cases like complicated

conjugation in languages with high morphological demands

the system allows for nearly any passage of code to be

bypassed with an embedded scripting language. We chose the

Lua scripting language as it has very low complexity and

memory footprint [1], such as for Mandarin.

2.1. Text segmentation

For any processing of the text it needs to be segmented to

smaller units: paragraphs, sentences, words, etc. An alternative

here is formatted text such as SSML (Speech Synthesis

Markup Language) which may already contain markers for at

least some of these units.

Sentence segmentation is somewhat more complicated as

different markings are used across languages. These markings

are addressed in Unicode report #29 [2], which even lists rules

where to break sentences and these rules have been coded into

the MLTTS system.

A further challenge is the segmentation into phrases. One

simple part-task follows any further markings in the text, such

as commas or dashes to make major parts of sentence, but this

is inadequate as a complete solution. Generally to find out

where further phrase boundaries could be inserted one should

know the parts-of-speech of the words in the text as well as the

phrase structure of the language in question. This phrase

structure can be defined in the language configuration file.

In the lack of very good phrasing it has been shown that

even randomly placed silences can increase the naturalness of

synthesized speech [3]. Hence as a temporary measure a

random phrase-segmentator was included in the system, but

the break it inserts was made extremely short and it is not

reported to the voice-generating engine so that prosody would

not suffer greatly. This has been noted most beneficial in

platforms that process the synthesis slightly slower than the

speech rate, such as on certain mobile phones, as processing-

mandated pausing make long continuous speech seem out-of-

place.

Much of the text processing also suggests Unicode

normalization to clear up the differences between code points

in accented letters, Korean letters, and double or half width

letters and other such issues. Several tools are readily available

for this task.

2.2. Text to phonemes

A main remaining task is to convert the text to a sequence of

phonemes. This part is inherently language-specific, which is

why our system is trained with data for the phonemization of

each language. A common phoneme set similar to IPA but

easier representable in computers was chosen. For polyglot

synthesis it is important that the phoneme set must be the same

across languages, wherefore e.g. SAMPA is not an adequate

solution.

The phonemization module uses decision trees along the

lines of Yvon [4], with fast language development described

by Moberg et al. [5]. This has been strengthened for more

generic use with regular expression support for special cases.

mailto:ext-bufan.zhang,%20yong.guan,jilei.tian,%20jari.alhonen%7D@nokia.com

Lexicon-based exceptions are also supported to allow for easy

additions of new words.

Further, the text should be segmented into syllables for the

voice generating engine to take advantage of. We first

employed a neural network-based algorithm, which created a

high accuracy syllabification scheme that relied on language-

specific data [6]. However, due to complexity issues slowing

down the processing this was later replaced with an extremely

simple universal syllabification scheme.

This so-called “fast syllabification” scheme merely

considers consonants and vowels, and in one pass through the

text string separates them into probable syllables. The syllable

breaking is done at the phoneme level as languages differ

greatly in the letter usage, and can be skipped for certain

languages where the writing system already indicates syllable

boundaries. A syllable is counted as consisting of at most one

leading consonant, one vowel or diphthong, and one or two

consonants at the end, using a phoneme set similar to IPA.

The fast syllabification is not quite as accurate as the

trained scheme, but it uses less than 1% of the processing

power needed for the neural network evaluation and the

difference in the final speech quality is generally not audible.

2.3. Prosody and other features

The prosody module in place is still in its infancy, and only

really deals with extremely simple intonation schemes and

various break lengths. The intonation scheme looks into clear

markers for questions and marks them as rising intonation, as

this is common in many languages and in most of those where

the intonation doesn't rise, raising the intonation is not an

error, only not necessary. Improvements to the prosody

module would require a tighter interface to the engines, which

would mean less ease in integrating new engines. This does

seem a worthy tradeoff, however. As it is, even the prosodic

features marked in SSML, such as pitch and contour, are

currently ignored. Fortunately HMM synthesis by its very

nature is rather forgiving on prosody, and voices trained with a

large enough database often sound surprisingly natural even

without any prosodic processing.

2.4. Numbers and symbols

The expansion of numbers into their fully written-out forms is

a rather more language-dependent task, but handled by the

language-independent code in our TTS system. The expansion

method was described in detail in our earlier paper [7].

3. Backend HTS System

EMIME HTS system: In English Hub1, Hub2 and Mandarin

Hub2 task, the HTS system is built using the framework from

the HTS-2005 system[8], and we built a speaker dependent

system Following algorithms and technologies were applied in

the speaker-dependent framework:

Speech analysis: A high quality speech vocoding method

called STRAIGHT (Speech Transformation and

Representation using Adaptive Interpolation of weiGHTed

spectrum) [9] was used, in conjunction with the mixed

excitation [10].

Training: To simultaneously model the duration for the

spectral and excitation components of the model, the MSD

hidden semi-Markov model (MSD-HSMM) was applied.

Speech generation: Generating smooth and natural

parameter trajectories from HMMs considering the global

variance (GV) .

GlottHMM system: In Mandarin Hub1 task, we built the

system with the the GlottHMM system by Helsinki University.

It has nearly same procedure as in EMIME system expect for

the inverse glottal filtering instead of mixed excitation. [11]

4. Conclusion

Multilingual high quality TTS is capable of supporting nearly

all languages of the world by using a single code executable

and only straying from common code execution. The light

resources needed to develop both the system and especially the

new language support highlights the low cost value of the

system. The system has also been optimized for low

complexity for mobile devices. Polyglot synthesis further

improves the experience of multilingual TTS but should be

tuned to the task and ideally to the listeners preferences. These

preferences can to a large extent be guessed based on their

language abilities.

5. Acknowledgement

The research leading to these results was partly funded from

the European Community's Seventh Framework Programme

(FP7/2007-2013) under grant agreement 213845 (the EMIME

project (http://www.emime.org).

6. References

[1] Ierusalimschy, R, de Figueiredo, L.H. and Celes, W., “The

implementation of Lua 5.0”, Journal of Universal Computer Science

11 #7, 2005.

[2] Davis, M., “Unicode text segmentation”, Unicode Standard Annex

#29 for Unicode version 5.2.0, Unicode Inc. Online:

http://unicode.org/reports/tr29/, accessed on 27 Apr 2010.

[3] Wang, X., Li, A. and Yuan, C., “A Preliminary Study on Silent

Pauses in Mandarin Expressive Speech”, ISCA, Proc. of Speech

Prosody, 2008.

[4] Yvon, F., “Self-learning techniques for grapheme-to-phoneme

conversion”, Proc. of the 2nd Onomastica Research Colloquium,

1994.

[5] Moberg, M., Pärssinen, K. and Iso-Sipilä, J., “Cross-lingual

phoneme mapping for multilingual synthesis systems”, Proc. Of

International Conference on Spoken Language Processing, pp. 1029-

1032, 2004.

[6] Tian, J., “Data-Driven approaches for automatic detection of

syllable boundaries”, ICSLP, 2004.

[7] Alhonen, J., “Multilingual number expansion for TTS”, IEEE,

Proc. of Oriental COCOSDA 2009.

[8] H. Zen, T. Toda, M. Nakamura, and K. Tokuda. Details of Nitech

HMM-based speech synthesis system for the Blizzard Challenge

2005. IEICE Trans. Inf. & Syst., E90-D(1):325–333, January 2007.

[9] H. Kawahara, I. Masuda-Katsuse, and A. Cheveign é,

“Restructuring speech representations using a pitch-adaptive time-

frequency smoothing and an instantaneous-frequency-based F0

extraction: possible role of a repetitive structure in sounds,” Speech

Communication, vol. 27, pp. 187–207, 1999.

[10]T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T.

Kitamura, “Mixed excitation for HMM-based speech synthesis,” in

Proc. EUROSPEECH 2001, Sep. 2001

[11]T. Raitio. Hidden Markov Model Based Finnish Text-to-Speech

System Utilizing Glottal Inverse Filtering. PhD thesis, Helsinki

University OF Technology, Faculty of Electronics, Communications

and Automation, Department of Signal Processing and Acoustics,

Helsinki, 2008.

http://www.emime.org/

