
The ModelTalker System

H. Timothy Bunnell1,2, Jason Lilley1,2, Chris Pennington1, Bill Moyers3, & James Polikoff1

1 Speech Research Lab, Nemours Biomedical Research, Wilmington DE, USA
2 Department of Linguistics, University of Delaware, USA

3 AgoraNet Inc., Newark DE, USA
{bunnell,lilley,penningt,polikoff}@asel.udel.edu, moyers@agora-net.com

Abstract
The ModelTalker TTS system has recently been largely
rewritten to change its design to make full use of information
derived from talker-specific HMMs that are trained in
optimizing phonetic transcription and alignment. Because this
system is substantially different than the system last used in a
Blizzard challenge in 2005, we decided to participate once
again. This allows us to both compare performance with the
previous version on similar tasks, and with the latest cutting
edge TTS technology. The current version of ModelTalker
appears to be comparable with the previous version in
segmental intelligibility and substantially improved in the
naturalness of its synthetic output.

Index Terms: voice banking, speech synthesis, unit selection

1. Introduction
ModelTalker is a unit selection text to speech (TTS) system
that has been developed in conjunction with a broader
application suite for use in voice banking, a process in which
users who are at risk for losing the ability to speak record a
corpus of their own speech for later use in a communication
aid or Speech Generating Device (SGD). Thus, the broad
project goals are to allow users who typically have little or no
knowledge of speech technology or acoustic phonetics to
successfully record a corpus of speech that is large and varied
enough to support concatenative synthesis.

Because many users in the target audience for this
technology—primarily patients with neurodegenerative
diseases such as amyotrophic lateral sclerosis (ALS)—already
are experiencing mild dysarthria when their disease is
diagnosed, it is impractical to consider recording the very
large corpora (equivalent to several hours of speech) that are
typically used for unit selection synthesis. Instead, the
ModelTalker corpora typically comprise less than an hour of
running speech and are structured to provide an extended form
of diphone coverage for English. The use of relatively small
corpora also dictates that the ModelTalker TTS system must
be able to manipulate intonation and timing in its waveform
generation stage, although its unit selection logic strives to
minimize the need to use f0 and timing modification, and users
are able to turn off signal modification entirely if they wish.

The first version of the ModelTalker TTS system was a
participant in the 2005 Blizzard challenge[1]. That system
performed relatively well in terms of word error rate (WER).
In overall WER, it was the second best system tested that year.
However, it performed poorly on the mean opinion score
(MOS) tasks where it was generally the lowest ranked system.
Thus, while the synthetic speech produced by ModelTalker
was very good in intelligibility, it sounded very unnatural.

We attributed the poor MOS scores for ModelTalker to
two factors, both of which stemmed from the fact that stimuli

for the 2005 challenge were generated with full signal
processing enabled in the system. First, ModelTalker was
synthesizing both the intonation and timing of all speech. That
is, rather than use timing and intonation estimates merely as
targets in the unit search, the system imposed its values via
PSOLA processing on the output speech. Several deficiencies
in the prosodic models, particularly with respect to segment
durations in consonant clusters led to somewhat unnatural
sounding speech timing. The second problem was that we later
found several bugs in the implementation of the PSOLA signal
processing that led to harsh buzzing due to replicating very
brief segments many times.

In the time since 2005, the ModelTalker system has
undergone significant changes. Many of these were related to
the recording program and process involved in capturing
acceptable corpora from novice users in a home or clinic
setting and to a redesign of the synthesizer front end.
However, within about the last 18 months, we have also
completely rewritten or significantly revised both our
waveform synthesis engine and the software that automatically
constructs a synthesis database from recorded corpora. These
latter changes were intended, in part, to improve the
naturalness of ModelTalker voices while maintaining or
improving intelligibility as well.

In the following, we describe the current ModelTalker
TTS system, concentrating on the changes that have been
made to the database construction and unit selection process.
Based on the overall Blizzard results, it appears that these
changes have resulted in improved naturalness. It is more
difficult to assess progress with regards to intelligibility, but
certainly the system’s WER is competitive with that of many
other systems.

Figure 1. ModelTalker overall design to guide recording and
generate a unit selection TTS voice from the recorded corpus.

2. ModelTalker System
The overall design of the ModelTalker system is illustrated in
Figure 1. It comprises three distinct components: 1) the
ModelTalker Voice Recorder (MTVR) program that is used to
assist in recording corpora; 2) the ModelTalker Voice
Constructor (MTVC) program that builds an appropriately
structured synthesis database from a corpus of recorded
utterances; and 3) the ModelTalker TTS system itself
(hereafter, MT) which consists of a DLL or shared object
library compatible with Windows, Mac OS X, and Linux, a
SAPI 5.1 interface for Windows systems, and a light-weight
user interface to the main functions of the primary library.

The MTVR program (Figure 2) is guided by an XML

control file that lists, among other things, the utterances to be
recorded and the preferred order in which to record them. This
control file is updated by MTVR to maintain a record of
device settings and the recording status of each utterance in

the corpus. MTVR includes a calibration procedure designed
to ensure that the recording environment is acceptable, that is,
that the recording volume is set appropriately, and that the
background noise level in recordings is sufficiently below that
of low amplitude speech segments such as /h/ and /f/. The
calibration procedure also collects statistics on the talker’s
speech characteristics to set limits on both the speaker-specific
f0 and speech amplitude range. Once calibrated, MTVR
guides the user in recording each utterance in the desired
corpus. First, working from the English gloss, MTVR requests
a phonetic transcription of the utterance from the MT front
end. It then displays the written text of the utterance to be
recorded, and plays an aural prompt of the utterance (either
synthesized by MT, or a prerecorded prompt if available).
After this prompt, the user initiates recording with a mouse
button click or key press, speaks the utterance, and terminates
recording with another button click or key press. The recorded
utterance is then analyzed by pitch tracking and a forced
alignment of the MT transcription to the speech signal. Results
of these analyses are displayed in the form of meters on the
MTVR interface as user feedback, and are used to determine if
the recording was acceptable in amplitude range, f0 range, and
pronunciation. The latter assessment is based on a confidence
measure from the HMM forced alignment. If the recorded
utterance is acceptable in amplitude, f0, and pronunciation,
MTVR automatically advances to the next utterance and
repeats this process. If the recording was not acceptable, users
are advised to rerecord the same utterance.

While the MTVR program has received a substantial
amount of the effort involved in updating the ModelTalker

system, it was not directly used for participation in the
Blizzard challenge. For that, recordings of the two primary
Blizzard English corpora were converted to resemble the final
output of the MTVR program and these were used directly as
the input to the MTVC program. For the conversion process,
we first ran a standalone version of the pitch tracker used by
MTVR on the 16 kHz Blizzard recordings to obtain the pitch
marking information used by MTVC. This pitch tracker
locates the onset of each pitch period (or an arbitrary epoch
during voiceless segments) and associates a binary voicing
decision flag with each onset marker. The onset markers are
used for both extracting PSOLA epochs and also for the pitch
synchronous analysis process used by MTVC. We then used
MT to phonetically transcribe the English text of each Blizzard
prompt with the 56-symbol transcription set used by MT.
These phonetic transcriptions were then force-aligned to the
Blizzard stimuli using an alignment tool trained on TIMIT
data. The transcriptions themselves, along with some prosodic
tags also generated by MT and associated filenames for the
Blizzard stimuli were finally formatted to resemble the output
typically derived from MTVR and that is used as the input to
our MTVC program.

In the following two sections, we describe in detail the
analysis process used by MTVC to create a synthesis database
for MT and the unit selection process used by MT for
concatenative synthesis.

2.1. MTVC

MTVC implements all aspects of the process of converting a
collection of appropriately formatted recordings to a synthesis
database for MT. This is achieved through the following
sequence of steps.

2.1.1. Feature Extraction

The first processing stage within MTVC performs acoustic
feature extraction and builds the primary acoustic parameter
database using pitch synchronous analyses. For research
applications and non-commercial testing purposes, the
acoustic database is an indexed sequence of PSOLA epochs
extracted from the raw speech files, however other waveform
encodings (e.g., residual-excited LPC) can also be used.
Regardless of the method used to encode data for waveform
synthesis, MTVC also calculates pitch synchronous acoustic
features for use in training speaker-specific HMMs. The
primary feature set used by MTVC is based on a principal
components decomposition of a 32-channel Bark-weighted
filter bank analysis of each pitch period or voiceless epoch
(hereafter we refer to the pitch synchronous analysis frames as
simply frames, or epochs whether it is computed from a voiced
or voiceless region of the signal). This analysis is similar to a
standard Mel or Bark cepstrum analysis except that the cosine
terms of the DCT are replaced with a series of speaker-specific
eigenvectors. Indeed, there is often considerable similarity
term-for-term between the eigenvectors and the terms of a
cosine expansion, although we presume that the eigenvectors
afford a more optimal speaker-specific solution.

In addition to (or instead of) the primary Bark-PCA
analysis, MTVC can calculate several other feature sets. These
include the time derivatives of the log spectral amplitudes in
each filter channel, the time derivatives of the PCA
coefficients, Line Spectral Pairs and their time derivatives, and
a collection of coefficients based on source features. A control
file and command line options to MTVC enable/disable each
possible feature data set. Each active feature set is treated as a
separate data stream for use in training continuous HMMs.

Figure 2. MTVR screen illustrating user feedback meters and
primary controls.

2.1.2. HMM Training

For HMM training, MTVC uses a locally developed library of
functions that allow monophone models to be trained with
both continuous and discrete feature streams. The continuous
acoustic feature streams extracted by MTVC may be
augmented with several discrete features that capture linguistic
properties including phonetic context, boundary level, stress,
etc. Because these discrete linguistic features align at the
phone or higher (e.g., syllable) level, they would be useless or
worse if used in monophones with simple left to right state
transition structures. To make use of the discrete feature
augmentation, MTVC “grows” parallel-state HMMs as
illustrated in Figure 3. That is, MTVC begins training with an
initial strict left to right model (in Figure 3, the initial model
would have 3 emitting states, but that is configurable) and then
after a brief initial training period, splits some or all of the
initial states to form parallel states that share connections with
logically prior and subsequent states, but do not have mutual
transitions. The new parallel state configuration is then trained
some more, and states may then be split again. In the example
illustrated in Figure 3 there have been two splits at each of
three left-right serial locations, and there would thus be 27
distinct possible paths through the HMM. The brown shaded
nodes with heavier connection arrows in Figure 3 illustrate one
such path.

This parallel state architecture along with the use of
discrete linguistic features affords an alternative to triphones,
prosodically conditioned models, or both. Rather than having
separate models (with possibly tied states) to represent a phone
in one phonetic or prosodic context, this approach represents
different contexts as different paths through the states of a
single monophone model.

One area of continued research in our lab is the question of
the best splitting algorithm for growing parallel state models,
and the best stopping criteria. For that reason, the current
version of MTVC incorporates several splitting algorithms and
stopping criteria. For the 2010 Blizzard challenge, we tried
just a few alternatives and screened the result by listening to
SU sentences to select the result that seemed best.

MTVC requires an initial alignment of phonetic
transcriptions to the speech corpus, for which we use a speaker
independent TIMIT-trained aligner. This alignment
information is used to estimate the initial HMM parameters
that are then refined by MTVC using embedded retraining
with Viterbi alignment along with the growth of the parallel
state structure as described above. The end result of HMM
training in MTVC is state-level alignment and indexing of all
recorded speech using the final parallel-state monophone
HMMs.

2.1.3. Data Pruning

After HMM training is completed, MTVC performs a series of
checks to detect and eliminate segmentation errors. Of course,

segmentation errors may be due to either a lack of agreement
between the phonetic transcript and what was actually spoken,
or to poorly aligning an accurate transcript. One level of data
pruning is achieved by rejecting segments that deviate
significantly (in a statistical sense) on a variety of dimensions
from overall averages for the segment. MTVC uses duration,
amplitude, proportion of voiced epochs, and log likelihood as
dimensions for this pruning process. Segments that are
identified as outliers on any of these dimensions are flagged as
such and become unavailable for use in synthesis.

An additional experimental mode of pruning utilizes an
HMM-based confidence measure to determine if segments are
to be flagged. This measure is based on comparison of the
forced phonetic alignment to an open phoneme recognition
pass in which all possible phones and phone sequences are
considered. In this mode, possible phone sequences may
optionally be conditioned by bi-gram probabilities. This
experimental confidence measure was used as the primary
pruning step in generating Blizzard voices. However, more
recent internal testing suggests that the original statistical
pruning approach often has greater sensitivity to segmentation
errors. The MTVC pruning strategy is another area of
continued study and development in our laboratory.

2.1.4. Database Construction

The final stage in MTVC processing is to assemble the data
files that comprise the synthesis database for MT. The version
of MT that was used for the Blizzard challenge required that
the following data files be built by MTVC: 1) a raw PSOLA
database consisting of every windowed epoch from the
original corpus; 2) the HMM models that resulted from
training; 3) A file of statistics that provide duration and pitch
information as conditioned by prosodic factors; and 4)
indexing data that provides information about all selectable
units and the location of the associated waveform epochs
within the raw PSOLA database. No attempt is made to
encode or otherwise compress the waveform data. In fact,
because PSOLA requires segments to be windowed over a
region amounting to twice the epoch duration, and because we
store each epoch separately for simplicity, the raw waveform
database for MT required roughly twice the storage space of
the original speech data.

2.2. MT Unit selection & synthesis engine

The previous version of the unit selection and synthesis engine
in ModelTalker [1, 2] indexed all biphone sequences in the
speech corpus and selected segment splice locations within
each phone of the biphone sequence as an integral part of the
unit selection Viterbi search. This strategy was derived as a
natural extension to a diphone synthesis system, wherein there
are multiple versions of each possible diphone from diverse
prosodic and segmental contexts and where decisions about
diphone boundary locations were postponed until synthesis
time. However, this approach discarded a substantial amount
of acoustic-phonetic information that was gained in aligning
speaker-specific HMMs to the speech corpus to estimate
segmentation boundaries.

The present version attempts to make better use of all the
information that is gained in training and aligning speaker-
specific HMMs to the speech corpus by adopting the HMM
state as the basic concatenation unit. This approach is similar
in various respects to a number of previously described
systems (e.g.,[3-5]) that use subphonemic waveform
concatenation units. The system described by [4] is perhaps
most similar in specifically defining concatenation units to be
HMM states, however, there are also a number of significant

Figure 3. Example HMM structure resulting from MTVC training.
Brown states connected by dark arrows indicate one possible path
through the HMM.

differences. First, the parallel-state HMM architecture used
here allows context sensitivity to be represented within the
framework of monophone HMMs rather than triphones.
Additionally, the clustering approach used to train triphone
models as described by [4] is an agglutinative process,
whereas the approach employed here progresses by state
splitting. Finally, whereas [4] stored only a single prototypic
region of waveform associated with each HMM state,
essentially preselecting all units (c.f., [6]) the present approach
stores all waveform instances associated with each state,
allowing much longer stretches of originally recorded speech
to be recovered from the database when appropriate for the
utterance to be synthesized, but at the expense of a much more
elaborate on-line selection strategy, more like that described
by [3].

The more or less standard unit selection strategy, e.g., as
described by [6], involves a Viterbi search over a set of
candidate units, each of which is assigned a target cost based
on some set of features and concatenation or join costs
associated with concatenating units. The Viterbi search then
finds the specific sequence of units that minimizes the
combined target and join costs. In MT, the basic concatenation
units may be as small as the portion of waveform aligned to a
single HMM state, but with the constraint that we allow at
most one segment-internal splice. This constraint results in
dividing each HMM phone model into potentially multiple
head/tail pairs of units. For example, with a simple 3-state
model that does not have parallel states, nor allow state
skipping, there would be two head/tail pairs of units to
consider: the pair in which the head consisted of only state 1
and the tail consisted of states 2 and 3, and the pair with head
consisting of states 1 and 2 and tail consisting of state 3. Thus,
the possible units for selection are a function of the HMM
architecture used by MTVC, and the constraint that only one
segment-internal splice is allowed. MT allows this domain to
be further constrained by specifying that only certain locations
within the logical left to right sequence of states may contain
splices. For instance, if using four-state models without
skipping or parallel states, one could specify that the only
acceptable splice location would be between the second and
third states. This would effectively constrain MT to mimic the
structure described by [3] in which segments are divided into
left and right half-phones.

To organize the search process efficiently, MT first builds
a search graph based on the desired phone sequence, the HMM
structure defined from MTVC, and any splice location
constraints. This graph contains one node for each possible
head and tail unit as described above. Each node is then
populated with all possible candidate units for that node, the
candidates are ranked by target cost, and pruned to at most
some predefined maximum number of candidates. In the
version of MT used for the Blizzard challenge, candidates
were further ranked and pruned into a series of tiers, with the
top tier corresponding to candidates that were perfect matches
to the desired target unit in triphone context, stress, boundary
level, and pitch accent. The prosodic features were based on
the syllable from which the unit was drawn. The second tier
level corresponded to units that matched the desired triphone
context but differed on one or more prosodic features from the
ideal target. Subsequent tiers ranked candidates per biphone
context, and so forth.

Table 1 lists the features used in calculating target costs.
Most of the features listed in Table 1 are relatively self-
explanatory, however, a few merit further description. For the
phonetic context, we use a function that provides a phonetic
distance between any two segments in the MT phonetic
inventory. The phonetic distances between the left and right

context segments of the candidate segment and those of the
target segment context are summed to calculate the target cost
that is multiplied by the cost weight. We have experimented
with several phonetic distance metrics including those based
on perceptual data, linguistic features, and physical acoustic
properties. For the Blizzard challenge, our distance measure
was based on the number of shared phonetic features and
sonority.

Two other target features are somewhat unique to MT. The
DHMM features provide observation and transition
probabilities for each parallel state of a complex HMM given
discrete contextual factors such as phonetic context, and
prosodic features. The robustness feature was added
specifically for use in Blizzard. Segments were flagged as
robust if they exceed average amplitude and duration for the
segment by 1 standard deviation or more. This feature was
added to provide a possible enhancement for noise masking
conditions.

Once all candidate units have been attached to nodes of the
search graph and given target cost values, the graph is
searched for the path that yields the minimum summed target
and transition cost normalized by the number of nodes
traversed in the path (skippable states and segments can result
in paths of different lengths being considered). The join costs
associated with this search are listed in Table 2.

Several of the join costs used by MT are commonly used
by most if not all unit selection systems. For example, join
costs associated with the difference in f0, RMS amplitude, and
spectral structure across the join are very commonly used in
one form or another. MT uses two forms of spectral join cost.
One is based on the KL divergence of the PDFs associated
with the states to be joined. The other is the Euclidean distance
between the magnitude spectra associated with the acoustic
analysis frames at the edges of the units.

Table 1. Features used to calculate target costs.

F0 Weight applied to normalized deviation in

average segment F0 from the F0 predicted by
prosodic models.

Duration Weight applied to normalized deviation in
segment duration from the duration predicted by
prosodic model.

Stress Weight applied to deviations from desired
segment stress.

Boundary
Level

Weight applied to deviation from desired
boundary level.

Phonetic
Context

Weight applied to phonetic distance between
target and candidate context segments.

Pitch Accent Cost associated with selecting a unit that differs
in pitch accent from the target.

DHMM
Features

Weight assigned to observation probability of
candidate state(s) given contextual factors.

Robustness A weight that favors “robust” segments.

Table 2. Features used to calculate join costs.

F0 Cost associated with F0 discontinuity.
State PDF Cost applied to the Hellinger Distance (or KL

Divergence) between state PDFs at a splice point.
Spectrum Raw spectral discontinuity cost.
Transition
Probability

Cost associated with the normalized state-to-state
transition probability at a splice.

RMS Ampl. Amplitude discontinuity cost.
HMM Path Cost associated with the within-phone path

probability that would result from a splice.
Discontinuity Additional cost of selecting any unit out of its

original acoustic context.

To better represent the dynamic structure across a join,
most differences are calculated as a composite of the
difference between the last epoch of the left unit and the epoch
before the first epoch of the right unit plus the difference
between the first epoch of the right unit and the epoch after the
last epoch of the left unit. Thus, the join costs are based on
differences between epochs of the potential synthetic output
and the epochs they are replacing in the original recorded
speech.

Two additional join costs are noteworthy in the MT
implementation. One is the path join cost, which is based upon
the mean spectral difference in states along the paths for the
two segments in which an internal splice is considered. The
second is the transition probability cost. For possible splices
within a segment, this is merely the transition probability
between the prospective spliced states normalized by the total
non-self transitions from the left state. Neither of these costs is
applied to joins at the edges of segments.

3. Blizzard tasks
Voices were built using MTVC for the two English hub tasks
and for two spoke tasks. The standard American English
ModelTalker dictionary was modified for these tasks to adjust
for the talkers’ RP pronunciation. About 225 words were
modified (e.g., been, again, schedule), where significant vowel
differences could lead to poor segment training and
unpredictable inaccuracies in phonetic labels. The other
primary change from the standard AE usage of MT was to
make the final RX (the MT symbol for the syllable final /r/
allophone) segment skippable for both HMM
training/alignment, and for synthesis. This allowed MTVC to
skip the RX segment in words where the RP pronunciation
resulted in simply schwa. Similarly, in the synthesis engine
search for units, MT was able to explore and use utterances in
which the nominal RX was skipped.

For the two spoke tasks ES1 and ES2, we explored a
number of possible alterations for both the unit selection and
signal post-processing. Most of these did not perform well and
were not used in the final voices. For example, an attempt was
made to generate a peak-enhanced version of the EH1
inventory for use in task ES2 using procedures similar to those
described in [7], however preliminary testing of the resulting
database suggested that it did not improve, and may have
reduced intelligibility of the voice in both quiet and noise. The
stimuli finally submitted for this task differed from those
submitted for the EH1 task only in that the robustness feature
was heavily weighted for unit selection.

For the ES1 task, we attempted to map the eigenspace of a
voice generated with EH1 stimuli onto the eigenspace
obtained by analysis of the first 100 sentences of the EH2
stimuli. This mapping did not succeed well enough to
recognize the resulting voice as that of the EH2 talker and was
dropped from the challenge. We interpreted the instructions
for the ES1 task to require that specifically the first 100
sentences of the ARCTIC inventory must be used to generate
the voice. Had it been possible to select any 100 sentences
from the ARCTIC set, we might have attempted a simple unit
selection inventory for this task.

4. Results
Overall, MT was around the middle of the pack for
intelligibility as measured on SUS listening tasks with about
15% WER for all listeners and conditions, and a little more
than 10% WER for native English speakers on the two hub
tasks.

On naturalness and similarity measures, the MT voices
were also in the average to high-average range of the voices
tested. The mean similarity score for MT voices over all
conditions was equal to or better than 12 of the 17 systems
tested. For naturalness, MT voices scored almost exactly in the
middle of the group, with an MOS that was equal to or better
than 9 of the 17 systems.

Of the reference systems in the present challenge, MT is
most similar to the Festival system in its general design. It is
thus of interest to compare scores on MT voices with scores
obtained with Festival. This comparison is presented in Table
3, which shows the WER scores for Festival and MT on the
three tasks where MT voices were used in SUS tasks. There
are two WER scores listed in each cell of Table 1. The score
over all listeners, and the score for Native English speakers
only are presented as OVERALL/NATIVE. As Table 3 shows,
the two system performed comparable in all conditions except
for Native listeners with voice EH2 where MT seems to have a
higher WER than Festival.

Table 3. Comparison of Festival and MT on SUS tests.

System Task

Festival MT
EH1 0.23/0.108 0.20/0.106
EH2 0.23/0.113 0.23/0.135
ES2 0.65/0.59 0.66/0.59

5. Discussion
The ModelTalker TTS engine and associated database
construction tool (MTVC) have undergone significant changes
within the last 18 months. The TTS engine has been
completely rewritten, and the database construction tool has
been significantly revised/extended to shift from a
predominantly biphone-based system using discrete HMMs
for segmentation to a purer non-uniform unit selection system
employing a newly developed library for mixed
continuous/discrete HMM training and alignment. While many
of the system changes are still experimental and undergoing
continued testing and revision, the 2010 Blizzard challenge
seemed an ideal way to assess progress on MT, both compared
to current state-of-the-art TTS systems, and more importantly,
to the performance of the previous MT system in the 2005
Blizzard challenge.

Arguably the most useful comparison between MT and
other systems in the present challenge is with the reference
Festival system. Overall performance of these two systems is
quite similar on nearly all measures. This is particularly
encouraging given that we discovered a number of bugs in the
calculation of target and join costs subsequent to creating
Blizzard stimuli and believe that the results obtained here for
MT represent more of a performance floor than ceiling for the
approach implemented in MT.

In the 2005 Blizzard challenge, the MT system was
comparatively strong in intelligibility as measured by SUS
listening tasks. The MT system did not rank as high in the
present challenge; however, this difference in rank appears to
be more due to significant improvements in TTS technology
generally than to any decline in the intelligibility of the MT
system. Indeed, the WER scores for MT in the present
challenge are very comparable to those of the system tested in
2005, despite the fact that voices in the present challenge were
recorded by talkers of the British English RP dialect, a variant
for which MT is not optimized.

Naturalness was a notable weakness of the MT stimuli
generated for the 2005 challenge. One of our main goals in
modifying MT has been to address this weakness, and in this
regard, we are quite encouraged by the results of the 2010
challenge, which show that MT voices are competitive with
other laboratory systems of similar design in both naturalness
and perceived similarity to the original talker.

6. Conclusions
Participation in Blizzard 2010 has been a valuable exercise

that has allowed us to assess and document progress towards
the next major revision of the ModelTalker system.

7. Acknowledgements
Development of the current version of ModelTalker has been
supported by grant R42-DC006193 from NIH, with additional
support from NIDRR grant H133E080003, and Nemours
Biomedical Research.

8. References

1. Bunnell, H.T., et al. Automatic personal synthetic voice

construction. in INTERSPEECH-2005. 2005. Lisbon,
Portugal.

2. Bunnell, H.T., S.R. Hoskins, and D.M. Yarrington. A
biphone constrained concatenation method for diphone
synthesis. in SSW3-1998. 1998. Jenolan Caves House,
Australia.

3. Beutnagel, M., A. Conkie, and A.K. Syrdal. Diphone
synthesis using unit selection. in SSW3-1998. 1998.
Jenolan Caves House, Australia: ISCA.

4. Donovan, R.E. and P.C. Woodland, Improvements in an
HMM-based speech synthesizer. Proceedings Eurospeech
95, 1995: p. 573-576.

5. Hauptmann, A.G., SPEAKEZ: A first experiment in
concatenation synthesis from a large corpus. Proceedings
Eurospeech 93, 1993: p. 1701-1704.

6. Zen, H., K. Tokuda, and A.W. Black, Statistical
parametric speech synthesis. Speech Communication,
2009. 51(11): p. 1039-1064.

7. Bunnell, H.T., On enhancement of spectral contrast in
speech for hearing-impaired listeners. J Acoust Soc Am,
1990. 88(6): p. 2546-56.

