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Abstract

We introduce a new open source speech synthesis engine and
related set of tools: Speect is designed to be a portable and flex-
ible synthesis engine, equally relevant as a research platform
and runtime synthesis system in multilingual environments. In
this paper we document our approach to the rapid development
of British English voices for the 2010 Blizzard Challenge using
this platform and resources.
Index Terms: speech synthesis, multilingual, open source.

1. Introduction
This paper presents our first entry into the Blizzard Challenge
[1], where different speech synthesis techniques are subjec-
tively evaluated and can be directly compared due to the use
of a common corpus of speech data.

The data given to the participants consisted of recorded
and annotated speech, as well as pre-processed Festival [2] ut-
terances and HMM-based Speech Synthesis System (HTS) [3]
context labels. One of our goals was to test Speect on relatively
large corpora as we have in the past only built South African
voices with very small corpora. All the utterance and label gen-
eration modules were implemented in-house and only the sup-
plied recordings and text annotations were used, thus excluding
the other labels provided and limiting manual intervention.

The remainder of the paper is organised as follows, Section
2 introduces the Speect system, Section 3 describes the voice
implementation, Section 4 provides details on voice building
, Section 5 presents the results followed by a discussion and
conclusion in Section 6.

2. The Speect TTS system
Speect is a multilingual text-to-speech (TTS) system that offers
various application programming interfaces, as well as an en-
vironment for research and development of TTS systems and
voices.

The use of the term “multilingual” text-to-speech in this
paper, refers to simple multilingual speech synthesis [4] where
language switching is usually accompanied by voice switching.
Systems of this nature are especially important in countries with
more than one official language as is the case in South Africa.

Speect was developed with maximum portability in mind.
It is written in the C language, with a strict conformance to
the ISO/IEC 9899:1990 standard. Platform specific system
calls are abstracted to allow ports to new platforms. The
architecture follows a modular object oriented approach with a
plug-in system, aiming to separate the linguistic and acoustic
dependencies from the run-time environment. A Python
wrapper interface is also provided, allowing for rapid research

and development of voices.

The system architecture can be divided into two distinct
parts, namely: engine and plug-ins.

2.1. Engine

The engine is completely independent of any language or wave-
form generation modules, and is solely responsible for the load-
ing of voices and their associated data and plug-ins, and con-
trolling the synthesis process. The engine is not dependent on
any external libraries, and provides lower level functionality to
the plug-ins.

The engine consists of the base system and the object
framework (see Figure 1). The base system provides a low level
library to the following modules:

• abstract data types (lists, buffers, hash tables),

• utilities (memory allocation, byte-swapping, timing, fun-
damental types, versioning, math and system path func-
tions),

• error handling, debugging and logging,

• platform independent concurrency abstraction,

• UTF-8 string handling (character and string level func-
tions, printing functions and regular expressions),

• and an object system.

The object system allows an object-oriented programming
approach to the higher level libraries implemented in the object
framework. These higher level libraries provide the following
modules:

• containers (map, list),

• data sources and data serialization,

• heterogeneous relation graphs (HRGs) [5] (for internal
utterance representation),

• plug-in manager,

• and a voice manager.

2.2. Plug-ins

The plug-ins provide new object types and interfaces to voice
data (linguistic and acoustic), as well as the processors that con-
vert some form of textual input into a waveform. These pro-
cessors, which are known as utterance processors, receive an
utterance as input and transforms the utterance in some way.
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Figure 1: Speect Engine architecture.

2.2.1. Utterance processors

In Speect the utterance is the input and output of all utterance
processors, even the waveform generating processors which
generate the speech signal. Internally an utterance is repre-
sented as an HRG based on the work done in [6], and all utter-
ance processors just add information to this structure through
an interface provided by the engine.

Utterance processors manipulate the utterance based on
knowledge of the:

• input type: an email message requires some extra pro-
cessing when compared to a single line of text,

• language: phonetisation will, for example, be different
for English when compared to isiZulu,

• and the specific voice: different voices will have different
speaking rates, pitch contours and so on.

2.2.2. Utterance type

There is a pipeline of utterance processors doing transforma-
tions on the utterance, and producing the synthetic speech. Such
a collection of utterance processors is known as an utterance
type. This enables us to define a different pipeline of utterance
processors, or order of utterance processors, for different input
types.

2.2.3. Feature processors

Utterance processors also make use of feature processors
(feature functions in [6]). A feature processor extracts features
from individual units in an utterance; these features can then
be used by the utterance processor. For example, we might
have a feature processor that, when given a word, syllabifies
the word and returns the syllables. Feature processors are
defined in a key-value (name, processor implementation)
mapping, and are called by utterance processors by their
names. The real power of feature processors becomes apparent
when doing multilingual TTS. We can, for example, reuse an
utterance processor and just redefine the key-value pair of a
feature processor (same name, different implementation) to do

syllabification for a different language.

All of this comes together in the definition of a voice.

2.3. Voice

In Speect, a voice defines the utterance types that can be used
for synthesis with the specific voice. Each of these utterance
types defines a pipeline of utterance processors. The voice also
defines the feature processors key-value mapping, connecting
a named feature processor to a specific implementation, which
the utterance processors can then use. Finally, the voice defines
it’s data, be that linguistic (phone sets, grapheme to phoneme
rules, etc.) or acoustic (unit inventory, acoustic models, etc.).
Note that everything that a voice defines can be shared between
voices. This voice definition is in the JSON [7] format which
can be easily edited to try different processor implementations
and data sets. Figure 2 gives a representation of this voice defi-
nition.

Data

Voice

Feature
Processor

Feature
Processor

Feature
Processor

.

.

.

Utterance Type

Input Utterance
Utterance

...Utterance
Processor

Utterance
Processor

Utterance Type

Input Utterance
Utterance

...Utterance
Processor

Utterance
Processor

Figure 2: Speect voice definition.

Speect is released under an MIT license and is available for
download at http:\\speect.sourceforge.net.

3. English voice implementation
For the implementation of the British English voices required
for the challenge, we chose to start with our minimal set of
currently available resources and implement modules through
a process of rapid development using a number of freely avail-
able software packages and Speect’s mechanism to incorporate
Python code during synthesis.

As we planned to use HTS as the back-end synthesiser, nat-
ural language processing (NLP) modules were implemented ac-
cording to the requirements of the set of linguistic features de-



fined in the HTS label set developed in [8].
NLP and digital signal processing (DSP) utterance proces-

sors were implemented as described in the following sections.

3.1. NLP

3.1.1. Tokenisation

Sentence and word tokenisers were implemented based on Uni-
code Standard rule sets for detecting sentence and word bound-
aries [9]. The rule sets are regular expressions which operate
on Unicode character properties instead of the characters them-
selves [10], allowing for a language-generic approach.

3.1.2. Normalisation

The classification and expansion of non-standard word tokens
such as numbers, times and dates were inspired by the rule-
based number spell-out approach introduced in [11]. The rule
engine is separated from the rules for a modular implementa-
tion. Tokens are classified by regular expressions which per-
form substitutions recursively in a context-free grammar style.
When the terminals in this “grammar” are reached, they are ex-
panded into words. The number spell-out expands numbers by
exploiting their inherently recursive verbal structure, through
repeated division and modulo operations.

3.1.3. Lexical look-up

The lexical look-up follows the implementation in [2], and
searches for each normalized word in the addendum (the ad-
dendum is a user definable lexicon) and then the lexicon. If not
found, then a pronunciation prediction is done on the word.

3.1.4. Pronunciation prediction

For the pronunciation prediction module a pre-processed ver-
sion of the CUVOALD pronunciation dictionary [12] contain-
ing around 63000 words and the MRPA phone set used in Festi-
val was used as a starting point. This dictionary was modified to
add explicit schwa’s where syllabic consonants existed as well
as a few other transformations to make it more appropriate in
the case of South African English [13]. Using these resources
the extraction of letter-to-sound rewrite rules was achieved us-
ing the Default&Refine algorithm [14], resulting in 19377 dis-
tinct rules. For the purposes of the challenge we also added
295 entries which did not exist in our source dictionary into a
pronunciation addendum.

3.1.5. Syllabification

The pronunciation dictionaries (the addendum and lexicon) can
define a word’s syllabification. If it is not defined then the
pronunciation is syllabified with an algorithm based on the
Optimality-Theoretic analysis and markedness constraints in
[15]. Some additional rules were added for syllabic consonants
(e.g. bottle, button, etc.), which are not treated in [15]. As we
deemed the output of this process to often provide better results
than the syllables defined in CUVOALD, we chose to discard
syllabification information provided in CUVOALD.

3.1.6. Part-of-speech tagging

A data-driven trigram part-of-speech (POS) tagger was built us-
ing the Natural Language Toolkit (NLTK) [16]. It was trained
on the included CoNLL 2000 corpus of about 260K words [17].

3.1.7. Chunking

For chunking a data-driven approach was also considered and
a noun, verb and prepositional phrase chunker was built with
NLTK. The training data set was again the CoNLL 2000 corpus.

3.1.8. Phrasing

A baseline phrase break predictor inserts breaks based on punc-
tuation. This was extended to use the chunk information by
implementing a rule-based phrase tokeniser on the chunk se-
quences. The tokeniser uses the same engine as the sentence
and word tokenisers. However, it was found that the developed
rules did not behave consistently, so the extension was discarded
(and, by implication, chunking as well).

3.1.9. Stress assignment

Rules based on syllable and POS information [18] assign word-
level and sentence-level stress to the text. The categories for
word-level stress are “unstressed”, “primary” and “secondary”.
Sentence-level stress is binary. The rules are not exhaustive;
they cover only words with a number of syllables up to three.

3.1.10. Tone assignment

The end of phrase ToBI [19] tone assignment was implemented
by use of a CART [20] that is included as part of Festival [2]
and trained on the Boston University FM Radio Data Corpus.

3.2. DSP

An utterance processor plug-in was written to provide an inter-
face for Speect to the hts engine API (version 1.02) [21]. A
feature processor is executed on each phone segment (as deter-
mined by the lexical look-up process) to extract it’s full context
labels from it’s utterance structure. These context labels are
then passed on to the hts engine which synthesises the speech
waveform based on the labels and the trained models.

4. Voice building
During the voice building stage we use the text front-end as
described in Section 3 in combination with the tools released as
part of Speect to perform phonetic alignment and train HMM
models for synthesis. These two aspects are described in the
following two sections.

4.1. Phonetic alignment

We use a forced-alignment process based on HTK [22] imple-
mented in a tool released as part of the Speect tool set. This
tool allows one to perform model initialisation from manually
aligned speech data transcribed in a different language or phone
set by mapping to broad phonetic categories (see Figure 3 for
an illustration of this process).

Figure 3: Automatic phonetic alignment process.

This approach has been shown to improve the accuracy of



results consistently when aligning small corpora of various lan-
guages over flat start initialisation [23]. For the alignment of the
two English corpora we follow this approach, using the multi-
speaker TIMIT corpus [24] for model initialisation by applying
the mappings detailed in Table 1.

Category TIMIT MRPA
long vowels iy, ao, ow, uw, @@, aa, uu

ux, er
short vowels ih, eh, ae, aa, @, a, e, i, ii,

ah, uh, ix o, oo, uh, u
diphthongs ey, aw, ay, oy, ax ai, au, e@, ei,

i@, oi, ou, u@
approximants l, r, w, y l, r, w, y
nasals m, n, ng, nx m, n, ng
voiced plosives b, d, g, dx, q b, d, g
unvoiced plosives p, t, k p, t, k
voiced affricates jh jh
unvoiced affricates ch ch
voiced fricatives z, zh, v, dh z, zh, v, dh
unvoiced fricatives s, sh, f, th, hh s, sh, f, th, h
long pauses pau, h# pau
short pauses epi, *cl pau cl

Table 1: Phone mappings for alignment purposes.

Informal inspection confirmed that alignments obtained
were of a high quality and indeed of better quality than the flat
start alternative, especially in the case of the “roger” corpus.

4.2. HMM training

Training of HMM models was done via the standard demonstra-
tion script available as part of HTS, incorporating global vari-
ance as described in [25] and modified to allow the use of Speect
as a text analysis front-end. This made use of HTS version 2.1
to construct models for the hts engine API (see Section 3.2).

For the model tying decision tree, we made use of the lin-
guistic questions provided with the demo script and customised
the phone set specific portions by generating questions based
on phonetic categories defined in the phone set (e.g. categories
such as plosives, nasals and vowels and voicing etc.).

For the HTS label feature set we experimented with labels
of varying complexity, ranging from the full set used in the
demo to reduced sets including only simple features based on
word, syllable and segment positions. The final system used
the full label set, however it was often difficult to distinguish
between synthesis samples obtained using reduced label sets
through informal listening tests.

Acoustic models for both tasks (EH1 and EH2) were trained
on all the available utterances in the respective corpus.

5. Results
The Blizzard challenge consisted of a number of tasks; we
participated in the tasks EH1 (build a voice from the UK En-
glish “rjs” database, 4014 utterances) and EH2 (build a voice
from the ARCTIC portion of the UK English “roger” database,
1132 utterances). Our designated system identification letter
is “O”; system “A” is natural speech, system “B” is a Festival
unit-selection voice benchmark, system “C” is an HTS 2005
benchmark, system “D” is the same as “C” but with hand cor-
rected labels and system “E” is a speaker-adaptive HTS 2007
benchmark. Systems “F” to “V” are other participants. In the

challenge the submitted entries were evaluated in the following
three categories:

• similarity to original speaker,
• mean opinion score (naturalness), and
• word error rate (intelligibility).

5.1. Similarity to original speaker

Figures 4 and 5 show the results of the perceptual tests from all
the listeners for the “similarity to original speaker” evaluation.
From the pairwise Wilcoxon signed rank tests we can see that
our system is not significantly different from system L, but is
different from the other systems for task EH1. For task EH2,
our system is not significantly different from systems K, L and
N, and is different from the rest.
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Figure 4: Task EH1: Similarity to original speaker.

5.2. Mean opinion score

Figures 6 and 7 gives the results from the perceptual tests from
all the listeners for the mean opinion score (MOS) evaluation.
The pairwise Wilcoxon signed rank tests return the same results
for task EH1 as in the “similarity to original speaker” evalua-
tion. In task EH2 our system is not significantly different from
system systems K and L, but is different from the rest.

5.3. Word error rate

Figures 8 and 9 gives the results from the perceptual tests from
all the listeners for the word error rate (WER) evaluation. The
pairwise Wilcoxon signed rank tests results indicate that for task
EH1 our system is significantly different from systems A, H and
S, while there is no significant difference to the rest. For task
EH2 our system is significantly different from systems A, C, D,
G, J and V while it is not significantly different from the rest.

6. Discussion and conclusion
Considering the mean opinion scores and voice similarity
scores, the trends for each task are consistent:
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Figure 5: Task EH2: Similarity to original speaker.
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Figure 6: Task EH1: Mean opinion score.

1. scores are significantly lower than most entries, and

2. scores are generally higher on the smaller “roger” cor-
pus.

Neither of these results are unexpected; the first result highlights
the fact that our relatively new synthesiser implementation, con-
taining only freely available components, does not yet employ
advanced spectral representations (such as STRAIGHT [26])
or improved source excitations as proposed in recent works
[27][28]. The second result suggests that it is easier to retain
the original speaker’s voice characteristics when a smaller num-
ber of well designed utterances are used for training; in the case
of the “rjs” corpus, using all the available utterances probably
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Figure 7: Task EH2: Mean opinion score.
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Figure 8: Task EH1: Word error rate.

resulted in “over averaged” acoustic models from this perspec-
tive.

Comparing results for intelligibility we were initially sur-
prised by the relatively high word error rates on the EH2 task.
Subsequent analysis suggested that some properties of our pro-
nunciation dictionary with modifications for South African En-
glish might have compromised our efforts here. It is interesting
that in the EH1 task this inefficiency seems to be less apparent;
this is evident from the the results (and was also confirmed by
listening to isolated speech samples).

These results suggest that future work should focus on an
improved waveform generation back-end and more appropriate
acoustic modeling to improve overall naturalness.
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Figure 9: Task EH2: Word error rate.
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