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Abstract 

For Blizzard Challenge 2010, Lessac Technologies built its 

first British English voice from the provided full database. To 

enhance methods for target cost calculation and unit selection, 

instead of traditional phonetic symbols, we used a more fine-

grained set of Lessemes to label units and applied the 

Hierarchical Mixture of Experts model to map linguistic 

features to acoustic parameters. The evaluation results show 

that we performed relatively well on similarity to the original 

speaker, and comparable to most systems with respect to 

naturalness. The high word error rate suggests that we need to 

improve on signal processing for concatenation. 

Index Terms: speech synthesis, Blizzard Challenge, Lesseme 

1. Introduction 

Lessac Technologies has developed an approach for 

concatenative speech synthesis in which expression, voice, 

and style are fundamental. Prior evaluations demonstrate that 

our text-to-speech system yields near human-quality 

expressive speech for General American English. Participation 

in the Blizzard Challenge gives us an opportunity to reach a 

larger and wider pool of listeners, and to compare our system 

with others to know where we are and which areas we need to 

improve. This is our first entry to the challenge and our first 

time building a British English voice. The next section 

provides a description of our text-to-speech system. Section 3 

explains the process of building the ‘rjs’ voice for our Blizzard 

participation. Results from the listening test and related 

discussion can be found in Section 4. The final section 

concludes the paper. 

2. Lessac Technologies Text-to-Speech 

System 

Similar to other systems, Lessac Technologies text-to-speech 

system consists of two main components: the front-end, which 

takes plain text as input and outputs a sequence of graphic 

symbols, and the back-end, which takes the graphic symbols 

as input to produce synthesized speech as output. In what 

follows, we visit the properties that distinguish our system 

from others and, we believe, play an important role in 

producing expressive synthesized speech. 

2.1. Use of Lessemes 

Successful production of natural sounding synthesized speech 

requires developing a sufficiently accurate symbolic set of 

sound representations that can be derived from the input text, 

and that relate the input text to be pronounced with the 

corresponding synthesized speech utterances that are heard by 

the listener. Rather than adopting traditional symbolic 

representations, such as IPA, SAMPA, or ARPAbet, Lessac 

Technologies has derived an extended set of symbolic 

representations called Lessemes from the phonosensory 

symbol set for expressive speech as conceived by Arthur 

Lessac [1]. The Lesseme system for annotating text explicitly 

captures the musicality of speech.  

In their basic form and meaning, Lessemes are symbolic 

representations that carry in their base form segmental 

information just like traditional symbolic representations. To 

be able to describe speech more accurately and to include in 

the symbol set information that is not carried by a typical 

phonetic symbol, each base Lesseme can be sub-typed into 

several more specific symbols which then represent phonetic 

information found in traditional phonetic symbols plus 

descriptors for co-articulation and supra-segmental 

information. Acoustic data demonstrate different properties of 

a set of Lessemes which are normally collapsed under one 

phonetic label in other systems [2]. 

At present, for the General American English, with the 

present Lesseme specification, there can be as many as 1,500 

different Lessemes. Compared to other sets of representations 

which usually contain about 50 symbols, Lessemes allow 

more fine-grained distinction of sounds. Units of the same 

type share closely similar acoustic properties. By having 

supra-segmental information directly encoded in Lessemes, 

we believe our system can target available units for 

concatenation better than a system with a relatively 

impoverished intonation annotation scheme. This should be 

useful especially when trying to produce expressive speech 

from a very large database. 

2.2. Front-end with extensive linguistic knowledge 

The front-end which derives Lessemes from plain text input is 

a rules-based system. The rules are based on expert linguistic 

knowledge from a wide variety of fields including phonetics, 

phonology, morphology, syntax, light semantics, and 

discourse. Simplistically, the LTI front-end labels text, 

building from, at the lowest level, letters, spaces and 

punctuation marks. These letters, spaces and punctuations are 

interpreted by the front-end, and assembled as syllables, 

words, phrases, sentences, and paragraphs to be spoken, along 

with context-aware labeling for appropriate co-articulations, 

intonation, inflection, and prosodic breaks. 

First, the input text is processed by a syntactic parser 

which generates the most likely syntactic tree for each 

sentence, and tags words with part-of-speech (POS) 

information. In the next step, words are transcribed by use of a 

pronunciation dictionary into base Lessemes accompanied by 

lexical stress.  Homograph disambiguation based on POS tags 

takes place at this step. Subsequent processing steps modify 

the base Lessemes by making successive decisions based on 

the overall phrase and sentence structure. In particular, 

prosodic breaks are inserted in meaningful places by taking 

into consideration factors such as punctuation, phrase length, 

syntactic constituency, and balance. In most phrases, an 

operative word is marked which carries the highest pitch 



prominence within the phrase. In addition, Lessemes are 

assigned inflection profiles and one of two degrees of 

emphasis. Context-based co-articulations across word 

boundaries are also captured. The result is a full Lesseme for 

each sound which encodes expressive intonational content in 

addition to segmental information found in traditional 

phonetic symbols. Once the front-end process on a plain text 

has been completed, a Lesseme stream is delivered to the 

signal processing back-end. 

2.3. Voice database construction 

In addition to the machine readable form used as the input to 

the signal processing back-end, Lessemes are also used in 

creating new voices, namely to automatically generate a 

human readable graphic output stream which can be thought 

of as annotated text plus a musical score, as illustrated in 

figure 1. 

 

 

 
 

      Figure 1: Lessac Technologies annotated text 

 

In the annotation, vowel orthographic forms are 

designated with Arthur Lessec’s phonosensory symbols. 

Consonant orthographic forms are marked with information 

indicating whether the consonant is sustainable (double 

underlined) or percussive, i.e. pronounced with a brief contact 

within the mouth (single underlined), as well as how the 

consonant is linked to the next sound in connected speech. 

The musical notation above the orthographic forms depicts 

‘notes’ of an intonation pattern that a person with sufficient 

voice training can follow. Each syllable corresponds to a note. 

Higher notes are pronounced with higher pitch. Large notes 

define stressed syllables while small notes refer to unstressed 

syllables. Some notes are further specified with an inflection, 

which reflects a particular shape of pitch movement within the 

syllable. 

During the voice database construction, the text to-be-

recorded is first processed by the front-end, yielding the 

stream of Lessemes. The resulting stream is then transformed 

into a human readable form, as seen in figure 1, which we use 

as the combined script and score for a trained voice talent 

during recordings to construct a voice model. The way the 

voice talent records the prompts is controlled by the annotated 

text and musical score. The recordings of the prompts are then 

segmented and labeled with the same Lessemes that underlie 

the script and score that the voice talent followed. The fact 

that the same Lessemes are output for the voice talent script as 

well as the labeling of the database creates a direct link 

between each speech snippet and its Lesseme label, thus a 

high degree of correspondence between the symbols and the 

sounds as actually recorded by the voice talent. Such high 

degree of symbol-to-sound correspondence is not guaranteed 

in the typical voice database construction, where the voice 

talent sees only plain text and the subsequent recordings are 

labeled with the symbols generated by the front-end.  

2.4. Hierarchical Mixture of Experts for mapping 

linguistic features to acoustic parameters  

To enhance methods for target cost calculation and unit 

selection, we apply the Hierarchical Mixture of Experts 

(HME) model [3] [4] to learn a direct relationship or mapping 

between the Lesseme representation of the input text and the 

ideal acoustic observables measures in the recordings. 

A functional diagram of the HME model is shown in 

figure 2. 

 

 
        Figure 2: Hierarchical Mixture of Experts model. 

     (E: experts, G: gates, x: input, y: output) 

 

The HME model applied to the problem of mapping 

prosodic features to acoustic observables makes use of the 

interpretation of the model as a parameterized mixture of 

Gaussians. Each expert in the model represents one multi-

dimensional normal distribution with a variable expectation 

vector that depends on the input x. The parameters for each 

expert also include a covariance matrix that is estimated and 

updated during the training. Each block of experts in a group 

or clique (3 experts in each of 2 cliques in the figure) together 

with a gating network represent one mixture of Gaussians 

whereby the mixture coefficients are computed in the gates as 

a function of the input. Multiple groups of experts can be 

combined by another gate in a similar way. The complete 

network represents a mixture of Gaussians whose parameters 

are trained from pairs of known input and output. During the 

learning process, the parameters in the experts and gates are 

adjusted so that, for a given known input x, the probability of 

obtaining the desired known output y is maximized.  

In our application of the HME model, the input x 

includes the linguistic features and the output y are acoustic 

observables, which include MFCC, F0, duration, and intensity. 

The model is applied recurrently, which means that the 

acoustic observables predictions for one sound are included in 

the input x for the prediction of the next y. 

We use supervised learning with the HME model to map 

linguistic feature sequences to acoustic parameters. The 

structure of the model is shown in figure 3. The system steps 

through a sequence of Lessemes and predicts for each 

Lesseme the vector of acoustic parameters that specify the 

unit, whereby the input to the model consists of the feature 

information of the previous, the current and the next two 

Lessemes. Further, by feeding back the previously predicted 

acoustic parameter vectors as input to the model, the model 



becomes partially auto-regressive. This facilitates the learning 

task because the model only has to learn to predict the current 

acoustic vector conditioned on the last two acoustic vectors 

and the input linguistic features. Learning proceeded in two 

phases. Initially, the looped-back input to the model is the 

actual acoustic vectors until the model begins to converge. 

Then, training is continued by having the predictions for the 

last two time slots become inputs for the prediction of the 

current time slot. Learning then proceeds by repeatedly 

processing a large number of sentences in the database, until 

the error variance minimizes at the valley. 

  Figure 3: Recurrent and partially auto-regressive prediction       

    of intonation contour and other acoustic targets by HME 

 

During the target cost calculation process, we compute 

the cost as the distance of the acoustic parameters of a 

candidate unit from the ideal trajectory, which is in turn 

directly predicted from the linguistic feature variables. 

3. Building ‘rjs’ Voice 

Blizzard Challenge 2010 provides participants with several 

tasks for English and Mandarin. We did not participate in any 

of the Mandarin tasks because, although we do not believe 

that the approach would be fundamentally a lot more 

complicated for Mandarin than for English, we have not done 

the up-front work that would be required to produce a 

Mandarin text-to-speech engine. We chose to participate in the 

English task of building a voice from the British English ‘rjs’ 

database with 4014 utterances (EH1) as our system has been 

designed to work with a very large database. From the 

experience, more than 15 hours of recordings give very good 

synthesis quality, while the results considerably deteriorated 

with a smaller database of 4-hour recordings. The ‘rjs’ 

database is the largest database provided in this challenge. It 

contains approximately 6 hours of recordings. 

3.1. Transcription to Lessemes 

Although the phonetic transcriptions for all the utterances 

were provided, we decided not to use them because our entire 

system is driven by Lessemes. Although it is possible to align 

the provided phonetic symbols with Lessemes, our experience 

showed that the process took time and involved a number of 

modifications to the system to be able to handle all one-to-

many and many-to-one correspondences. Thus, we only ran 

the utterances through the front-end to generate Lessemes and 

did not do further mapping from the provided phonetic 

symbols to Lessemes. 

Regarding the dictionary, we used an American English 

pronunciation dictionary to transcribe the words into 

Lessemes. A British English Lesseme dictionary has yet to be 

developed. For the current task, there is enough overlap 

between the two to justify the use of an American English 

dictionary to produce British English speech. 

For a handful of words that were not in the dictionary, we 

manually added them to the dictionary. Our system has the 

letter-to-sound rules, but since the ‘rjs’ database is relatively 

small in comparison with the database we normally work with, 

we wanted to include as many quality units as possible and 

thus did not let letter-to-sound rules spoil some units. 

As seen in Section 2, the use of Lessemes allows our 

system to have more control over the prosodic aspects of 

speech. However, in the current exercise, we did not have the 

recordings done by a Lessac trained voice talent reading the 

annotated prompts and score similar to Figure 1. The 

correspondence between Lessemes and the recorded sounds 

can only come from the performance of the front-end. In more 

recent work, we have used the Lesseme front-end parser to 

process text for the annotation of already existing recordings 

in order to create multiple additional new voices. The 

synthesized output appears to capture much of the prosodic 

quality found in the original recordings, and we expected 

similar results in the speech synthesized from the ‘rjs’ voice. 

3.2. Automatic segmentation 

Segmentation was done based on features that were extracted 

by filtering the speech waves through a bank of gamma tone 

filters, followed by extracting the envelope amplitude for each 

channel and low-pass filtering both the amplitude and the 

sample differentials of the channels, providing 48 channels in 

total which where then reduced by using the first 10 

coefficients from a principal component analysis. The ehmm 

model in speech tools was used for processing the 

segmentation. For the provided speaker data rjs, the method 

did slightly better (but not significantly better) than the 

standard method of segmentation based on mceps and delta 

mceps, which we tried first. As we do for other voices, in 

order to reduce the total number of states for the EHMM, we 

collapsed several of the Lesseme classes used in our 

annotation into larger super classes, in such a way that 339 

states remained.  

3.3. Database creation 

As our phonetic labeling and concept of the prosodic structure 

is different from the information found in the provided 

utterance files, we did not use the provided utterance files, but 

generated our own. We modified Festival feature functions to 

produce relevant linguistic features at segment, syllable, word, 

and phrase levels based on the Lessemes and prosodic breaks 

that the front-end output. The end time of each unit came from 

the label files produced by the automatic segmentation. As for 

the acoustic parameters, we extracted MFCC, F0, duration, 

and intensity. All the linguistic features and acoustic 

parameters were collected into a binary catalog file, which 

was then used to train the HME model offline and called by 

the synthesizer during run-time.  

3.4. Synthesizer 

While Lessemes help narrow the pool of candidates for unit 

selection and enable more precise targeting, labeling units 

with Lessemes can lead to the problem of non-existing or 

sparse units of particular labels in the database, especially the 

small database. We handled the problem by incorporating a set 

of fail-over rules. Whenever the target Lesseme has a very 

limited number of or no matching candidates in the database, 

the rules look for closely matched Lessemes, e.g., those with a 

different inflection or pitch level, to include among the 

candidates for the target and join cost calculations. 



Similar to [5], our join cost calculation discourages joins 

between sonorant sounds. The join penalty varies depending 

on the types of joining sonorants. For example, the join 

between two vowels get higher penalty than the join between a 

vowel and an onset lateral sound. 

After the best units are selected, they were put together 

with very simple time-domain. Two signals are concatenated, 

the new unit to the preceding sound, by a blend-over, which 

makes use of a blending function similar to a hyperbolic 

tangent function, but approximated by two continuously 

connected third order polynomials. The signal is multiplied by 

the blending function which gradually changes from 1 to 0 for 

the first signal by the time-reversed blending function that 

gradually increases from 0 to 1 for the second signal. No 

attempts were made to alter intensity or fundamental 

frequency of the original speech signals. 

4. Results and Discussion 

Seventeen systems participated in the EH1 task (building a 

voice from the full dataset). During the online evaluation of 

the task, listeners were asked (i) to judge how similar a system 

is to the original speaker, (ii) to provide mean opinion scores 

(MOS) representing how natural or unnatural the utterances 

from the news and novel domains sound, and (iii) to transcribe 

the semantically unpredictable sentences (SUS) they heard. 

The listeners included paid participants, volunteers, speech 

experts, native and non-native English speakers. Results for 

our system in comparison with a standard Festival unit-

selection system and others are presented below. 

4.1. Similarity to original speaker 

With respect to how similar synthesized speech is to the 

original speaker’s speech, Lessac Technologies is one of the 

six systems with the median score of 4 on the 5-point scale. 

The Festival Benchmark system also falls within this group.  

Pairwise Wilcoxon signed rank tests reveal that two systems 

score significantly higher than us. Figure 4 illustrates a 

comparison among the natural speech, the Festival system, the 

average of all systems, and our system. 
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     Figure 4: Mean scores for similarity to original speaker 

 

Although the Festival system achieves a higher mean 

score than us, the pair-wise tests do not exhibit a statistically 

significant difference. Compared to the score averaged from 

all the participating systems, the utterances produced by our 

system sound more similar to the natural speech. 

As previously mentioned, we used an American 

pronunciation dictionary to build and synthesize the British 

English voice. In some cases, this could result in low 

similarity ratings as some sounds, especially vowels, 

representing an American accent may be selected for 

concatenation. We believe that when a Lesseme dictionary for 

British English becomes available for use in text-to-speech 

synthesis, the similarity ratings will improve. 

4.2. Naturalness 

A 5-point scale MOS was used to evaluate how natural 

synthesized speech sounds. Three systems achieved the 

median score of 4. Lessac Technologies is among the ten 

systems with the median score of 3. Within this group, the 

performance of our system does not significantly differ from 

three other systems, including the Festival Benchmark system, 

and we score significantly better than the remaining six 

systems. A comparison among the natural speech, the Festival 

Benchmark system, the average of all systems, and the Lessac 

Technologies system is provided in Figure 5. 
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                        Figure 5: MOS for Naturalness 

 

The naturalness of our synthesized speech appears to be 

comparable to what was produced by other systems, including 

the Festival Benchmark system. However, when compared to 

natural speech, there is still a lot of room for improvement. It 

would be very useful for us to have the results for individual 

sentences so we can perform further analyses, especially on 

those sentences with low scores. 

4.3. Word error rates 

Figure 6 demonstrates the word error rates for the natural 

speech, the Festival system, the average of all systems, and 

our system respectively. 
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                  Figure 6: Word error rates for SUS 

 

The first thing to note is that the natural speech received 

12% word error rate. This confirms the close relationship 

between the identity of a given word and the semantics of its 

context. Deprived of meaningful context, listeners cannot 

perfectly identify the words they hear. 

Regarding the performance of our system in the SUS test, 

the figure shows that we are very far from the ideal. We rank 



behind other twelve participating systems with respect to the 

word error rate. We think that the poor performance came 

from our very simple signal processing method, described in 

section 3.4. In many concatenation points, the method cannot 

get rid of glitches or low-level reverberations, which distract 

listeners and make it difficult to identify the words they hear, 

especially when the sentence does not provide the necessary 

semantic clues. 

5. Conclusions 

Our weakest point currently is in the signal processing for 

concatenation, and admittedly we have neglected that aspect 

relative to the others. We are doing fine on naturalness. That 

we are getting relatively good results for similarity to the 

original speaker is promising, and it gives us some confidence 

that it is worthwhile to try to represent and capture in the 

synthesis model idiosyncratic properties of the original voice 

that are not directly represented by known explicit models. 

Instead, we introduced Lessemes, which carry both segmental 

and supra-segmental information, and chose methods of 

machine learning using a simple but sufficiently 

comprehensive model that may be able to discover some of 

these properties and represent them for the for the context 

dependent prediction of all acoustic feature variables, while 

making few assumptions about the nature of the relationship 

between acoustic signal parameters and perceived 

prosody.  The participation and evaluation by the Blizzard 

challenge was very helpful for us, even though we would have 

liked to have our system tested not just on short phrases and 

semantically unpredictable sentences, but much more on 

reading a short story of a few pages. Longer synthesized 

speech could be used in a listening comprehension test, which 

would be where prosody and expressiveness play a larger role. 
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