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Abstract
For the 2009 Blizzard Challenge we have built an unsupervised
version of the HTS-2008 speaker-adaptive HMM-based speech
synthesis system for English, and a noise robust version of the
systems for Mandarin. They are designed from a multidisci-
plinary application point of view in that we attempt to integrate
the components of the TTS system with other technologies such
as ASR. All the average voice models are trained exclusively
from recognized, publicly available, ASR databases. Multi-
pass LVCSR and confidence scores calculated from confusion
network are used for the unsupervised systems, and noisy data
recorded in cars or public spaces is used for the noise robust
system. We believe the developed systems form solid bench-
marks and provide good connections to ASR fields. This paper
describes the development of the systems and reports the results
and analysis of their evaluation.
Index Terms: speech synthesis, HMMs, speaker adaptation

1. Introduction
Speaker adaptation that transforms a given set of HMMs to a
target speaker or condition is a successful technique for both
automatic speech recognition (ASR) and HMM-based text-to-
speech (TTS) synthesis. [1]. Although we have mainly devel-
oped speaker-adaptive HMM-based speech synthesis systems
for purely TTS purposes, that is, to improve the similarity of
the synthetic speech to natural speech, we can also consider de-
velopment of these systems from a multidisciplinary application
point of view.

Speech-to-Speech Translation (S2ST) that “enables real-
time, interpersonal communication via natural spoken language
for people who do not share a common language” [2] is a chal-
lenging multidisciplinary application for speech processing, and
many large-scale projects (Babylon, TC/LC-STAR, EU-Trans,
ATR, etc.) have focused on this topic. In our recently-started
FP7 project, Effective Multilingual Interaction in Mobile Envi-
ronments (EMIME) [3], we are developing a device that per-
forms personalized S2ST, such that the user’s spoken input in
one language is used to produce spoken output in another lan-
guage, while continuing to sound like the user’s voice. Con-
trary to previous ‘pipeline’ S2ST systems that combined iso-
lated ASR, machine translation (MT), and TTS systems, or sys-
tems that coupled ASR with MT [4, 5], EMIME places major
emphasis on coupling ASR with TTS, specifically to simulta-
neously enable robust, rapid, unsupervised, and cross-lingual
speaker adaptation for HMM-based ASR and TTS systems.

The principal modeling framework of speaker-adaptive
HMM-based speech synthesis is conceptually similar to con-

ventional ASR systems (but without discriminative training,
such as minimum phone error (MPE) [6]) and it is therefore
possible to share Gaussians, decision trees or linear transforms
between the two [7]. Within this framework we can also con-
sider building TTS voices using ASR corpora [8]. This data is
not ideal from a TTS perspective since it may be contaminated
with noise, is often recorded under a variety of conditions with
microphones of varying quality, and/or may lack phonetic bal-
ance. Our recent experiments, however, have demonstrated that
speaker-adaptive HMM-based speech synthesis (which uses an
‘average voice model’ plus speaker adaptation) is robust to the
non-ideal data contained in ASR corpora [9]. This naturally
leads to a more unified approach that shares noise robust HMMs
between ASR and TTS. For noise robust ASR, HMMs are usu-
ally trained on speech data corrupted with various kinds of
noise, and the systems employ a variety of noise reduction or
suppression techniques such as Wiener filtering. For the 2009
challenge we investigate whether it is feasible to train HMMs
for TTS from ASR databases that include very noisy speech
data (for example recorded in a car or public space) as a first
step towards unifying noise robust ASR and TTS. If the amount
of noisy data is equal to that of clean speech data, then clearly
the TTS voices adapted from the model trained on the noisy data
will be worse than those from the model trained on clean data.
We therefore analyze the advantages (and disadvantages) of the
more likely situation, where much more noisy data is available
than clean data.

Another essential task for such an application is to per-
form the speaker adaptation in an unsupervised manner, allow-
ing completely automatic voice building from arbitrary speech
data. In the EMIME project we have developed unsuper-
vised adaptation techniques for HMM-based TTS using either a
phoneme recognizer [10], a word-based large-vocabulary con-
tinuous speech recognizer (LVCSR) or a technique that maps
TTS-HMMs to ASR-HMMs [11]. These are emerging tech-
niques which are undergoing continual improvement, and we
therefore investigate the performance of the unsupervised adap-
tation frameworks to assess what improvements are required for
them to compete with supervised TTS systems. For this pur-
pose, we discard all transcriptions and all supervised materials
included in the provided corpus and adopt the latest multi-pass
large-vocabulary continuous speech recognizer to generate tran-
scriptions of the data.

The EMIME TTS systems are based on the framework from
the “HTS-2007 / 2008” system [9, 12], which was a speaker-
adaptive system entered for the Blizzard Challenge 2007 and
2008 [13]. We have built an unsupervised version of the HTS-
2008 systems for English and a noise robust version of the sys-



tems for Mandarin. Given the more difficult restrictions we
impose, our goals are not to improve the quality of the syn-
thetic speech but to make it comparable to that of the original
HTS-2008 systems which was trained on supervised clean data.
Specifically there are two major aspects that we want to analyze
from the Blizzard Challenge, that is, 1) the relationship between
the amounts of adaptation data and the performance differences
between unsupervised and supervised systems and 2) the use-
fulness of noisy data. In the following sections we describe the
development of the systems and report the results and analysis
of their evaluation.

This paper is organized as follows. Section 2 gives an
overview and analysis of the ASR corpora used for building
EMIME TTS systems. A brief overview of the HTS-2008
speaker-adaptive HMM-based speech synthesis system is given
in Section 3.1. Section 3.2 mentions new features such as AMI
RT06 LVCSR and adaptation data pruning based on confidence
scores used for the unsupervised system. Section 3.3 men-
tions the use of mel-generalized cepstra for the noise-robust sys-
tem. System details and performance are described in Section
4. Then section 5 concludes the paper by briefly summarizing
our findings.

2. External ASR speech databases used for
training of average voice models

In the 2008 challenges, high-quality TTS databases including
40 hours of speech data recorded in highly-controlled recording
studio environments were used for training the average voice
models in the HTS-2008 system. Of the challenge entrants, the
system had equal best naturalness on the small English data set
and equal best intelligibility on both small and large data sets
[12]. The easiest solution to improve the quality of synthetic
speech is to increase the size of the databases, since the natural-
ness of the synthetic speech generated from the adapted models
is closely correlated with the amount of data used for training
the average voice models [1].

For the 2009 challenge, we designed the speaker-adaptive
HMM-based speech synthesis systems from a multidisciplinary
application point of view, and attempted to integrate the compo-
nents of the TTS system with other technologies such as ASR.
We therefore build the average voice models exclusively from
well known and publicly available ASR databases. We believe
that the systems form a good benchmark since all the materials
used, including databases and tools (e.g. HTK/HTS), are pub-
licly available, and that the techniques provide good connec-
tions to ASR fields, encouraging ASR researchers to participate
in future Blizzard Challenges.

2.1. English databases

For the English average voice models, we have used the Re-
source Management database (RM) [14] and the Wall Street
Journal databases (WSJ0, WSJ1, and a British English version
of WSJ0 called WSJCAM0) [15, 16]. These ASR databases are
relatively old, and quite small, typically consisting of 10’s of
hours of speech, whereas recent ASR systems use thousands of
hours of training data. However, they are still typical of clean
speech databases that have been (and continue to be) used for
over a decade, and it is therefore worthwhile to obtain TTS re-
sults from them. Details of the English ASR corpora are shown
in Table 1. The amounts of speech data for RM, WSJ0, WSJ-
CAM0, and WSJ1 are 5 hours, 15 hours, 22 hours, and 66 hours
respectively. Although the duration for WSJ1 exceeds that of

Table 1: Details of English ASR corpora used for building av-
erage voice models.

Corpus (subset) speakers sentences/speaker sentences
RM (ind total) 160 40.0 6400
WSJ0 (short) 84 86.1 7236
WSJCAM0 (total) 140 81.5 11408
WSJ1 (short) 200 191.3 38278

Table 2: Phonetic coverage of English ASR corpora.
Corpus triphones/corpus contexts/corpus
CMU-ARCTIC 10708 91247
RM 7162 114945
WSJ0 18577 421476
WSJCAM0 23534 675266
WSJ0+WSJ1 23776 1246728

the databases used for HTS-2008, it includes only American
English speech data whereas the target speaker of the 2009 Bliz-
zard Challenge is British. Only WSJCAM0 has British speech
data.

Contrary to normal TTS databases where professional or
semi-professional narrators utilize standard accents and speak-
ing styles, the speakers included in the ASR databases have a
variety of accents. Since the Unilex pronunciation lexicon from
CSTR supports multiple accents of English in a unified way
– by deriving surface-form pronunciations from an underlying
meta-lexicon defined in terms of key symbols – it is possible,
in theory, to prepare different phonesets for each accent. In
practice, however, time constraints meant we were unable to do
this, and we simply used general American (GAM) and British
received pronunciation (RP) phonesets based on the speaker’s
nationality. Using speech recordings that comprised a variety
of accents for training could be prove to be an advantage or
a disadvantage: If the target speaker has an accent for which
training data is not available, models trained on the various ac-
cents would be more appropriate since they have larger variance
and can capture the variation in the unseen accent. On the other
hand when the target accent is limited to, for example RP, as it
is in this Blizzard Challenge, a more appropriate average voice
model would be one trained only on RP speakers, rather than
one trained on various accents.

One clear advantage of the ASR corpora is phonetic cov-
erage. Triphone and context coverage is a simple way to mea-
sure the phonetic coverage of a corpus. Table 2 shows the total
number of different triphone and context types in the English
corpora. Since the pre-defined official training data set (known
as SI284) for WSJ1 includes WSJ0 as a part of training data, we
followed instructions for the November 93 CSR evaluations and
calculated them together. A larger number of types implies that
the phonetic coverage is better, which in turn implies that the
corpus is more suitable for speech synthesis. For comparison,
the coverage of the CMU-ARCTIC speech database which in-
cludes four male and two female speakers is also shown. We
can see that the coverage of the complete WSJ0, WSJ1 and
WSJCAM corpora is much higher than CMU-ARCTIC. This
is because all speakers in CMU-ARCTIC read the same set of
sentences and thus the total coverage across all speakers in the
database is about the same as that of an individual speaker. This
leads us to believe that these ASR corpora should be better for
building speaker-independent/adaptive HMM-based TTS sys-



Table 3: Details of the Mandarin Speecon corpus used for build-
ing average voice models.

Environment speakers sentences/speaker sentences
Office 200 29.6 5916
Public space 180 29.9 5378
Entertainment 75 29.9 2240
Car 75 30.0 2247
Total 530 29.8 15781

(a) Clean data recorded in office space

(b) Noisy data recorded in public space

Figure 1: Spectrograms of clean and noisy data

tems as well as speaker-independent ASR systems. The RM
corpus, because of its very limited domain and small word vo-
cabulary, has relatively poor coverage and would be unsuitable
for use as a TTS corpus unless combined with other data.

2.2. Mandarin database

For the Mandarin average voice models, we have used the Man-
darin Speecon databases [17]. The Mandarin speecon databases
include speech data recorded with various amounts of back-
ground noise, detailed below. Sample spectrograms are shown
in Figure 1. We directly cite definitions of the noise categories
from [17]:

Office
mostly quiet; if background noise is present, it is usually
more or less stationary.

Entertainment
a home environment but noisier than office; the noise is
more coloured and non-stationary; it may contain music
and other voices.

Public place
indoor or outdoor; noise levels are hard to predict.

Car
a medium to high noise level is expected of both station-
ary (engine) and instantaneous nature (wipers).

Details of each environment are shown in Table 3. The lengths
of speech data recorded in office, public space, entertainment,
and car are 12.3 hours, 11.3 hours, 4.9 hours, and 5.2 hours,
respectively. Noise levels in dB [A] for each environment are
shown in Table 4. We can see that the public space and car en-
vironments have larger means and variances. We chose a set
of speech data recorded in the relatively quiet “office” environ-
ments (although this is not still perfectly clean. See Max value!)
for training the baseline system and compared it with systems
using all data regardless of the environment. Note that these
systems each have about three times as much speech data as the
baseline system. For the same reasons as the English system,
we used an identical phoneme set for all speakers available in

Table 4: Noise level in dB [A] for each environment.
Noise dB [A]

Environment Mean Variance Min Max
Office 44.7 25.5 34 54
Public space 56.7 45.3 41 73
Entertainment 46.9 24.2 37 61
Car 57.0 130.0 34 71

Table 5: Phonetic coverage of the Mandarin speecon corpus.
Environment triphones/corpus contexts/corpus
Office 4999 71863
All environments 5865 181338

Monophone HSMM Segmental K-means & EM

Speaker Adaptive Training

Speaker Adaptive Training
Context-dependent HSMM

Tied-state
context-dependent HSMM Speaker Adaptive Training

Decision-Tree-based Context Clustering 
(MDL criterion) & State Tying

Initial Segmentation

Figure 2: Overview of the training stages of average voice mod-
els.

the corpus, although it includes 4 major dialectal accents (Bei-
jing, Chongqing, Shanghai, and Provinces). Table 5 shows the
total number of different triphone and context types in the cor-
pus. We see the data set for the mixed environments has a much
larger coverage than that of the office environment. There is a
trade-off between consistency of recording conditions and pho-
netic coverage.

The data also includes isolated words, spelling pronunci-
ation utterances and phonetically balanced sentences. Since
we are unsure of the effects of using large quantities of iso-
lated words or spelling pronunciation utterances on synthesis,
we used only the phonetically balanced sentences as training
data for the average voice model in this experiment.

3. EMIME Systems
3.1. HTS-2008: Speaker-adaptive HTS benchmark systems

The HTS-2008 systems utilized speaker-independent HMMs
that model acoustic features used for the STRAIGHT [18]
mel-cepstral vocoder with mixed excitation (the mel-cepstrum,
log F0 and band-limited aperiodicity measures) [19]. For de-
tails see [9, 12].

An overview of the training stages for the average voice
models is shown in Figure 2. First, speaker-independent mono-
phone MSD-HSMMs are trained from an initial segmenta-
tion, converted into context-dependent MSD-HSMMs, and re-
estimated. Then, decision-tree-based context clustering is ap-
plied to the HSMMs and the model parameters of the HSMMs
are tied. The clustered HSMMs are re-estimated again. The
clustering processes are repeated twice and the whole process
is further repeated three times using segmentation labels refined
with the trained models in a bootstrap manner. All re-estimation



Table 6: WERs [%] obtained from the AMI 2006 RT system for
each genre and pass.

Genre
Pass Address Arctic Carroll Herald 1 Herald 2 Herald 3
P1 47.3 41.7 58.4 40.2 36.6 34.3
P3 41.0 25.5 47.9 26.8 23.5 23.3
P6 40.8 27.5 47.8 28.1 24.8 24.2

and re-segmentation processes utilize speaker-adaptive training
(SAT) [20] based on CMLLR [21]. Finally the trained average
voice model is adapted to a target speaker in a supervised man-
ner, that is, with the correct labels.

3.2. Unsupervised HTS-2008 using multi-pass LVCSR

3.2.1. AMI RT06 LVCSR

For unsupervised speaker adaptation, we need to automatically
obtain transcriptions/labels of the given adaptation data. For
this purpose we attempted LVCSR using a system trained on
the databases mentioned earlier, and an external LVCSR system
called “AMI 2006 RT” system [22].

The first LVCSR system was built by using a technique
that maps TTS-HMMs to ASR-HMMs [11] and the 5k/20k
language models associated with the WSJ databases. Unfor-
tunately, these language models do not match the ARCTIC
sentences selected from Gutenberg which we were required to
use for the challenge, and therefore WERs obtained from the
LVCSR were poor. Compared to this, the open-domain six-pass
AMI 2006 RT system with the 50k language model provided
consistently low WERs for various genres including ARCTIC.
The six passes of the decoding process are as follows [22]:

P1
Voice activity detection and speaker diarization using
GMMs and HMMs [23] followed by initial decoding us-
ing a WFST based decoder. [24]

P1 post-processing
Feature level processing such as warping factor estima-
tion for VTLN [25], estimation of LCRC posterior fea-
tures [26] followed by PCA and HLDA [27], and tandem
feature generation from the frequency warped PLP and
posterior features.

P2
CMLLR estimation using initial hypothesis obtained
from P1, followed by decoding using MPE/VTLN/SAT
models with bigram

P3
Lattice expansion (bigram to 4-gram) and rescoring

P4
CMLLR estimation using rescored 1-best hypothesis

P5
MLLR estimation on the top of the CMLLR transforms

P6
Confusion network generation using word posteriors
[28, 29]

We chunked the pre-split waveforms for each genre and
again performed voice activity detection and speaker diariza-
tion. The diarization system uses a unsupervised clustering
approach which automatically determines “who spoke when”,
which includes the estimation of the number of speakers. The
diarization of the full Roger database suggested that it included
two speakers, however, the second speaker was assigned only
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Figure 3: Histogram of weighted confidence scores for each
genre.

a few utterances and thus we excluded the utterances assigned
to the second speaker and only utilized those assigned to the
first. The WERs of the AMI system for each genre and pass are
shown in Table 6 where we see that the WER, even for Arctic, is
less than 30% for the final pass. Although the results of the final
pass P6 are worse than P3’s, we directly utilized 1-best hypoth-
esis of P6 since we wanted to use confidence scores calculated
from the confusion network.

3.2.2. Adaptation data pruning based on confidence scores

In general the WERs vary by sentence, with some sentences
having extremely high WERs. For speaker adaptation it is rea-
sonable to remove data with bad transcriptions. To determine
which sentences to prune, we used sentence-level confidence
scores obtained from confusion networks in a similar way to
[30]. In the original paper, the confidence scores were used to
choose poor data that required manual transcription, whereas
we use the scores to simply remove poorly transcribed data.

The sentence-level confidences are found by calculating the
weighted average of the word level confidence scores as fol-
lows:

Cs =

P
w∈s Cw TwP

w∈s Tw
(1)

where Cs the sentence-level confidence score of a sentence s,
Cw is the word-level confidence score of a word w, and Tw is
duration of the word w.

Figure 3 shows histograms of the sentence-level confidence
scores for a hundred sentences of the Arctic genre, all sentences
of the Arctic genre, and all sentences of the Herald genre. We
see that this tails to about 0.5 in terms of confidence scores. The
following are examples of automatically obtained transcriptions
with high and low confidence scores:

(2) Cs=0.9 Corr: A quarter of Londoners admit the traditional
family knees-up always ends in a barney
Auto: A call from London is a bit the traditional
family knees up always ends in a bunny

Cs=0.6 Corr: For services to Ophthalmology.
Auto: For services in a form all the G.

Although we have not yet confirmed a correlation between the
confidence scores and the quality of synthetic speech, we found
that some artifacts can be avoided by pruning data having low
confidence scores based on manually specified thresholds for
Cs.



3.3. Noise robust HTS-2008

Since this is our first challenge using speech with background
car noise etc. for TTS, we did not use any noise suppres-
sion techniques. Instead we simply changed acoustic features
from mel-cepstra to mel-generalized cepstra [31] with cubic-
root compression of amplitude and applied SAT which includes
CMN and CVN implicitly and trained the average voice mod-
els as normal. Mel-generalized cepstra are similar to PLP fea-
tures in terms of spectral representation [31]. Thus, we expect
that they should provide similar robustness to noise as the PLP
features, which are known to give small improvements over
MFCCs, especially in noisy environments, making them the
preferred encoding for many ASR systems [32]. We have also
confirmed that mel-generalized cepstra have better ASR perfor-
mance than mel-cepstra [7].

3.4. Audio examples

Audio examples for each system above are available online via
http://homepages.inf.ed.ac.uk/jyamagis/blizzard09/.

4. System details and their performance
4.1. Released databases / Adaptation data

For the 2009 challenge, a British English and a Mandarin cor-
pora were released. They included 15 hours and 10.5 hours of
clean speech data, respectively. Using these corpora and the av-
erage voice models above, we built ES1 (100 sentences), EH2
(arctic sentence), and EH1 (all sentences) for English and MS1
(100 sentences) and MH1 (all sentences) for Mandarin.

Supervised training of systems trained on clean data are
utilized as speaker-adaptive HTS benchmark (system D) and
systems trained either in an unsupervised fashion or on noisy
data are utilized as EMIME systems (system W). By compar-
ing these systems, we can see 1) the relationship between the
amounts of adaptation data and the performance differences be-
tween unsupervised and supervised systems from English re-
sults and 2) the usefulness of noisy data from Mandarin results.

4.2. Front-end text processing

The English labels, including the initial segmentation for the
data, were automatically generated from the word transcrip-
tions and speech data using the Unisyn lexicon [33] and Fes-
tival’s Multisyn Build modules [34]. The Multisyn Build mod-
ules identified utterance-medial pauses, vowel reductions, or re-
duced vowel forms and they were added to the labels. For the
out-of-vocabulary words, letter-to-sound rules of the Festival’s
Multisyn were used.

The Mandarin labels were also automatically generated
from the word transcriptions and speech data using an extended
LC-STAR lexica [35] and Nokia’s in-house TTS modules based
on SAMPA-C. We used phonemes instead of typical Mandarin
units, initial/final [36] since we found that the phoneme-based
systems outperform when the amount of adaptation data avail-
able is limited because of a lower number of units [37].

4.3. Training systems and footprint

We used Edinburgh’s grid computing system that has 1456
processors to train average voice models and their adapta-
tions. All the procedures were concurrently conducted per
state, per stream, per speaker, and/or per subset of training data.
Open MPI further divided them to small subsets using multiple
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Figure 4: MOS for English EMIME systems
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Figure 5: MOS for Mandarin EMIME systems

threads.
Tables 7 and 8 show the number of leaves of each of the

decision trees and the footprints of each system. From the ta-
bles, we see that the numbers of leaves of mel-cepstral and ape-
riodicity parts for WSJ0 and WSJCAM0 are lower than those
of speaker-dependent (SD) HMMs although WSJ0 and WSJ-
CAM0 databases have similar sizes to those for the SD-HMMs.
Contrary to this, they have almost the same or more leaves for
log F0 and duration parts. The fact that they include various di-
alectal accents may partially explain the existence of the redun-
dant log F0 leaves. However, further investigation is required
for the extremely redundant duration leaves. For the Mandarin
systems, we see that the system using data in all environments
has more leaves than that of the SD-HMMs or that using office
environments only.

4.4. Findings from the 2009 Blizzard Challenge results

Synthetic speech was generated for a set of 445 test sentences,
including sentences from conversational, news and novel gen-
res (used to evaluate naturalness and similarity) and semanti-
cally unpredictable sentences (used to evaluate intelligibility).
To evaluate naturalness and similarity, 5-point mean opinion
score (MOS) and CCR tests were conducted. The scale for the
MOS test was 5 for “completely natural” and 1 for “completely
unnatural”. The scale for the CCR tests was 5 for “sounds like
exactly the same person” and 1 for “sounds like a totally dif-
ferent person” compared to natural example sentences from the
reference speaker (EM001). To evaluate intelligibility, the sub-
jects were asked to transcribe semantically unpredictable sen-
tences; average word error rates (WER) were calculated from
these transcripts. The evaluations were conducted over a six



Table 7: The number of leaf nodes and footprints for each English speaker-dependent (SD) and speaker-adaptive system.
Number of leaves in decision tree Footprint of acoustic models [MB]

System Mel-cepstrum log F0 Aperiodicity Duration HTK format hts engine format
SD (full) 5833 27137 6790 4045 517 13.0
RM 2122 12417 2839 3733 334 5.8
WSJ0 2945 26952 2624 13165 669 11.0
WSJCAM0 3599 40326 3237 23641 981 13.0
WSJ0+WSJ1 10861 105940 9202 51567 1697 34.0

Table 8: The number of leaf nodes and footprints for each Mandarin speaker-dependent (SD) and speaker-adaptive system.
Number of leaves in decision tree Footprint of acoustic models [MB]

System Mel-cepstrum log F0 Aperiodicity Duration HTK format hts engine format
SD (full) 4837 14175 4654 3335 400 9.5
Office environment 2373 15320 3238 3474 442 7.0
All environments 6272 33905 6378 7695 681 17.0

week period via the internet, and a total of 482 and 334 lis-
teners participated for English and Mandarin, respectively. For
further details of these evaluations, see [38].

Figures 4 and 5 show MOS results of related systems in the
Blizzard evaluation. We summarize our findings below:

The unsupervised approach (D vs W in English)
The unsupervised systems are comparable to the super-
vised system when the amount of adaptation data is lim-
ited. This is consistent with our previous experiments
[11, 39]. However they become less comparable as the
amount of available data increases.

The use of noisy data (D vs W in Mandarin)
The systems using both noisy data and clean data have
comparable or slightly better MOS values than systems
using clean data only. This is a promising result since
mixing noisy data would be essential for noise robust
ASR and this implies that TTS can share the HMMs.

We can see the same tendency from results for both similarity
and intelligibility tests.

4.5. Differences between 2008 and 2009 results

By comparing evaluation results of the speaker-dependent and
speaker-adaptive HTS systems in the 2008 and 2009 Blizzard
Challenge (C vs V in 2008 challenge [12] and C vs D in 2009
challenge), we can see the effect of different average voice mod-
els indirectly.

In the 2008 challenge, the HTS-2008 systems using 40
hours of TTS speech data outperforms SD-HMMs. However
the 2009 system trained on ASR corpora do not reach the qual-
ity of SD-HMMs in either of the two languages. The fact
that HMMs trained on the WSJCAM0 database is as small as
ones trained on the target speaker’s database (see Table 7) may
mostly explain the performance reduction in English. On the
other hand, the amount of noisy data and clean data obtained
from the Mandarin ASR corpora was 34 hours, which is 3 times
more than the amount for the SD-HMMs. However there is a
clear gap between systems C and W in the 2009 Mandarin re-
sults. From this we conclude that using speech data recorded in
various conditions for ASR is not as efficient as increasing very
clean speech data for TTS.

5. Follow-up study
Since we did not have enough time to analyze the proposed
systems during the Blizzard Challenge period, we performed
follow-up listening tests for evaluating the unsupervised ap-
proach including the use of confidence score mentioned in Sect.
3.2 and our hypothesis mentioned in Sect. 4.5.

System configurations used for the follow-up listening tests
are shown in Table 9. The first group (System A to E) was de-
signed for comparison of speech databases used for training of
the average voice models. “CSTR” represents CSTR in-house
40 hours of TTS speech data used for the HTS-2008 systems
in the 2008 challenge. The second group (D, F to J) was de-
signed for comparison of the unsupervised approach and the
use of confidence score. “P1” and “P6” refer to the transcrip-
tions automatically obtained in the P1 and P6 recognition pass
of the AMI RT06 LVCSR system. “CS Threshold” represents
the threshold for pruning adaptation data based on the confi-
dence scores. We utilized all test sentences of the 2007, 2008,
and 2009 challenge and evaluate naturalness and similarity in a
similar way to one of the Blizzard Challenge. The number of
listeners who completed the listening test was 68.

The evaluation results are also shown in the same table. In
the MOS evaluation on naturalness for the first group, system
A was found to be statistically better than other systems except
system E (p < 0.01). The system E was also found to sta-
tistically better than system G (p < 0.01). Other differences
in the group were not statistically significant. In the similarity
(SIM) evaluation for the same group, there was no statistically
significant difference.

In summary the ASR corpus that should have been used for
training of the average voice models in this Blizzard Challenge
was not the British English WSJCAM0 database (system D) but
the American English WSJ0+WSJ1 database (system E) even
for the British target speaker, because the database has about 80
hours of speech data. This underpins our hypothesis on the per-
formance reduction mentioned in Sect. 4.5. This result also un-
derpins our another hypothesis on the effect of various record-
ing conditions of ASR corpora, since the system trained on the
WSJ0+WSJ1 database does not outperform the original HTS-
2008 system (system A) that uses 40 hours of TTS speech data,
which is half amount of the WSJ0+WSJ1 database.



Table 9: System configurations used for follow-up listening tests. CS stands for confidence score. MOS and similarity scores are also
given in the last two columns.

Index Corpus Duration (h) Supervision Transcriptions CS Threshold MOS SIM
A CSTR 40 Y Multisyn n/a 3.4 3.1
B RM 5 Y Multisyn n/a 2.2 2.6
C WSJ0 15 Y Multisyn n/a 2.6 2.9
D WSJCAM0 22 Y Multisyn n/a 2.7 2.7
E WSJ0+WSJ1 81 Y Multisyn n/a 2.8 3.0

D WSJCAM0 22 Y Multisyn n/a 2.8 3.0
F WSJCAM0 22 N P1 0.00 2.3 2.5
G WSJCAM0 22 N P6 0.00 2.5 2.5
H WSJCAM0 22 N P6 0.80 2.4 2.6
I WSJCAM0 22 N P6 0.90 2.4 2.5
J WSJCAM0 22 N P6 0.95 2.4 2.4

In both the MOS and similarity evaluation for the second
group, there was no statistically significant difference observed.
Since the difference between supervised and unsupervised sys-
tems are relatively small, we need to collect more listeners.

6. Conclusions
For the 2009 Blizzard Challenge we have built an unsupervised
version of the HTS-2008 speaker-adaptive HMM-based speech
synthesis system for English and a noise robust version of the
system for Mandarin and have analyzed their performance.

The unsupervised approach and noisy data may be used in
the framework of speaker-adaptive HMM-based speech synthe-
sis system to strongly link ASR and TTS. However, they also
have some negative effects for TTS: the unsupervised approach
are comparable to the supervised system when the amount of
adaptation data is limited, but they become less comparable as
the amount of available data increases. The systems using both
noisy data and clean data have comparable or slightly better
MOS values than systems using clean data only, but the use
of speech data recorded in various conditions for ASR is not as
efficient as increasing very clean speech data for TTS.
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