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Abstract 
In this paper, we describe the configuration of our 
synthesizer, as used for the Blizzard Challenge the first time. 
Two new UK English voices were built for the DSSP 
synthesizer, our in-house unit selection synthesizer, which 
uses non-uniform units and a symbolic description of target 
prosody. Listening tests indicate reasonable quality although 
there is still room for improvement.  
 
Index Terms: speech synthesis, unit selection, evaluation of 
synthesized speech 

1. Introduction 
The Blizzard challenge [1] is a yearly speech synthesis 
challenge for evaluating synthesizers and advancing the 
technology. In 2008, the Vrije Universiteit Brussel (VUB) 
team participated in the challenge the first time. We built two 
UK English voices: voice A, using the complete Roger 
database and voice B, using the Arctic subset of that database.  

Our system, tentatively called the DSSP synthesizer, is a 
synthesizer based on unit selection. It was developed as part 
of a computerized reading tutor for children with reading 
problems under a speech technology project funded by the 
Belgian government known as SPACE (SPeech Algorithms 
for Clinical and Educational applications) [2]. Although the 
quality of synthesized speech has improved a lot over the last 
decade, recordings of natural speech instead are still being 
used in most recent reading tutors (e.g., [3] and [4]). In order 
to meet the quality expected for such an application, we 
designed a hierarchical speech generation strategy which 
synthesizes speech as a sequence of non-uniform units. 
Recently, the synthesizer has been extended to support multi-
modal unit selection, so to synthesize speech audio-visually. 

Corpus-based concatenative speech synthesis (e.g. [5]) is 
the mainstream way to synthesize speech. In such 
synthesizers, a large speech database is first segmented into 
small units. To synthesize an input text, the best combination 
of speech units is selected from the database to match the 
utterances, based on the sum of weighted cost functions. The 
selected unit sequence is then concatenated to generate 
synthesis. Like any unit selection synthesizer, the DSSP 
synthesizer has two parts: a language-dependent front-end 
providing natural language processing, and a language-
independent back-end providing unit selection. The system 
supports Dutch, and now UK English as well because of the 
challenge.  

This paper is structured as follows; in section 2, we give 
an overview of the voice-building process. The front-end and 
the back-end are described in sections 3 and 4 respectively. 
The results of the listening tests are discussed in section 5. 
Our conclusions and future work are given in section 6. 

2. Voice-building 
The construction of a new voice for the DSSP synthesizer is 
mostly automated. Before building a voice, the recordings for 
the new voice need to be segmented and labeled. An 
orthographic transcription of each of these utterances must be 
available. 

We used EHMM, which is part of the Festvox toolset [6], 
to segment the data for the two voices. EHMM is an HMM-
based forced aligner. It can detect and insert pause labels that 
are missing in the input labeling. Festival utterance structures 
[7] containing such labels were provided by the Blizzard 
organizers. Since our front-end uses the same phone set and 
lexicon as those used for creating these utterance structures, 
we could use the labels in the utterance structure files as input 
to the EHMM script. Training was performed with the default 
settings on the Arctic data in order to align the data for both 
the full and Arctic voices. 

One feature of the DSSP synthesizer is that a voice can be 
built adaptively, i.e. new data can be added to the system 
without the need to rebuild the existing part of the voice. The 
phonemic sequence of each utterance is stored in a tree-based 
index, allowing fast search of the speech database. Separate 
indexes are also constructed for words and syllables.  

 As in most other unit selection synthesizers, acoustic 
features needed for computing join costs, such as MFCC and 
f0, are extracted offline and stored beforehand. Based on the 
orthographic transcription of each utterance, the front-end 
generates symbolic information, which is used to calculate the 
target costs. Each segment, i.e. phoneme, of the database is 
labeled as such. Small mismatches between the front-end 
output and speech database labels, mostly due to pauses 
which are not predicted by the front-end, are resolved by 
performing dynamic time warping between the label sequence 
and the phonemic sequence generated by the front-end. 

3. UK English Front-end 
The UK English front-end of our synthesizer performs 
language-dependent natural language processing. Figure 1 
shows an overview of the front-end. It uses some Festival [8] 
modules to perform its tasks. 

The target prosody of the output speech is described 
symbolically only. Acoustic parameters, such as f0 and 
duration, are difficult to predict because of the natural 
variation of prosody. As prosody is described symbolically 
only, acoustic prosody models are not needed. This idea is 
also implemented in some other synthesizers, such as 
Multisyn [9].  

Firstly, the input text is normalized into words, of which 
the pronunciation can be determined. A part-of-speech tagger 
determines the syntactic category of each word in the 
utterance. These words are then organized into phrases. The 



algorithm for predicting phrase boundaries and pauses is 
described in the next section.  

The word pronunciation module converts each word into 
segments (i.e. phonemes) and groups these segments into 
syllables. Lexical stress is assigned to each syllable. The 
pronunciation of a word can be looked up in a lexicon, in our 
case the Unisyn lexicon [10], with its orthographic 
transcription and part-of-speech tag as input. The Unisyn 
lexicon supports multiple regional pronunciation variants. 
The lexicon was set to its Received Pronunciation (RP) 
variant, which is close to if not the accent of the speaker itself. 
Out-of-vocabulary words are handled by the memory-based 
grapheme-to-phoneme conversion technique described in 
[11], implemented with TiMBL [12]. No post-lexical 
processing is performed. 

The intonation module predicts a symbolic description of 
the intonational contour of the input utterance using a 
decision tree. Intonation is described as ToBI accents.  
 

 

Figure 1: Overview of the UK English Front-end. 
Modules with an * are provided by Festival. 

3.1. Pause and Phrase Prediction 

An utterance consists of one or more prosodic phrases. It is a 
well-known fact in linguistic literature that phrase boundaries 
are optional. For example, the utterance “Simon and Rob 
were seeing through the window.” can be pronounced as 

• Simon and Rob were seeing though the window. 

• Simon and Rob | were seeing though the window. 

• Simon and Rob were seeing | though the window. 

(where “|” represents a phrase boundary) 

This optionality makes it more difficult to predict phrase 
breaks and to evaluate phrasing algorithms because, in many 
cases, phrase breaks which do not match a reference may 
actually be judged as acceptable by human listeners [13]. 
Furthermore, pauses occur not only between phrases, but also 
within a phrase. Such pauses can also be found in the Roger 
and Arctic databases. Therefore, we need to predict not only 
those pauses between phrases, but also those within a phrase. 

Over the last two decades, research in phrase boundary 
prediction has shifted from rule-based approaches to data-
driven methods. These trainable systems are commonly 
trained on manually labeled data (text). The process is labor-
intensive and inter-rater agreement is typically not very high. 
Silverman et al. reported an agreement of 69% among four 
labelers [14]. Ideally, the labeling should be carried out 
manually using the orthographic transcription and the speech 
database. This is not practical. Therefore we propose a 
different approach. We performed training on automatically 
labeled data. This results in speaker-dependent training. 

However, we need to assume that the speaking rate of the 
speech database does not vary too much, which is the case for 
the Roger and Arctic database. In our system, we defined 
three types of pauses: 

• Heavy: long pauses, occurring between utterances 

• Medium: shorter pauses, occurring between phrases of 
an utterance 

• Light: short pauses, occurring between words of a 
phrase 

The data is labeled iteratively as follows: 

1. Label each pause as heavy, medium or light by referring 
to the punctuation. If there is a full stop, the pause is 
labeled as “heavy”; if there is a comma, “medium”, etc.  
Calculate the mean duration of each type of pause. 

2. For each pause, re-set the label of the pause as the type 
which has the closest mean duration. 

3. Recalculate the mean duration for each type. 

4. Go back to (2) until none of the pause labels needs to be 
changed. 

After labeling, a machine-learning algorithm can be used to 
predict pauses. Each token of the text of the training database 
can now be labeled with one of four classes (heavy, medium, 
light and non-pause) by checking whether the speaker has 
inserted a pause after the token in the recording, and reading 
the type of pause from the iterative process above. The 
machine-learning part of our system is similar to the memory-
based learning (MBL) approach described by Busser et al. 
[15]. The features that we use are the part of speech, pre-
punctuation, punctuation and orthographic transcription of the 
tokens; the 2 tokens preceding and the 2 following. Machine 
learning is done by the IGTree algorithm, using TiMBL with 
default settings. For synthesis purposes, both medium and 
heavy pauses are actually taken as phrase boundaries because 
some pauses, though labeled as “heavy”, are found to be 
phrase pauses. 

In order to evaluate our system, we performed 10-fold 
cross-validation. For the Arctic voice, training was performed 
on the Arctic data set only. Results are shown in table 1, 
listing precision, recall and F-score. Accuracy is the total 
number of correct items. 

 
Training set Precision Recall F-score Accuracy 

Full 85.465 % 85.475 % 85.463 % 95.826 % 
Medium 86.253 % 86.340 %  86.297 % 96.075 % 

Arctic 68.515 % 68.559 % 68.537 % 94.978 % 

Table 1: The Results of Pause and Phrase Boundary 
Prediction. The “medium” data is a randomly 

selected subset of the full training set (28027 tokens). 

Precision Recall F-score Accuracy 

74.4 % 76.1 % 72.8 % 90.0 % 

Table 2: The Results as Reported by Busser et al. 
Training was carried out on a manually labeled 

corpus using a similar machine-learning technique. 

The full database is almost 10 times larger than the Arctic 
subset (93426 vs. 9836 tokens) Using such a large training 
database has a positive effect on the performance. The results 
of training a system on manually labeled data (39369 tokens) 
as reported by Busser et al. are shown in table 2. Note that 

Text normalization* 

Part-of-speech tagging* 

Pause and phrase prediction 

Word pronunciation 

Pause insertion 

Intonation* 



they used a different training corpus. These results seem to 
suggest that training on automatically labeled speech can 
yield better performance. Our labeling procedure probably 
makes it easier for the machine-learning algorithm to learn. 
The consistency of the speaker regarding phrase boundaries 
might be better than the agreement between manual labelers. 
Due to the optionality of phrase boundaries, the “real” results 
might be even better than these results here. Actually, we 
need to insert breaks so that our breaks match those in the 
speech database. Further analysis of these results is, however, 
out of the scope of this paper. 

4. UK English Back-end 
The back-end of the DSSP synthesizer consists of a unit 
selection framework, allowing several unit selection 
synthesizers to be implemented. Based on the output of the 
front-end, targets are constructed. These targets could be of 
any size. Besides the target cost based on extended phonemic 
identity matching mentioned in [16], several other target costs 
are defined, each describing a single symbolic feature. For 
each demiphone of a candidate unit, we check whether the 
value of a feature matches that of the corresponding 
demiphone of the target. The value of the target cost is the 
number of demiphones of which the value is different. Table 
3 lists the targets costs used in our synthesizer for the Blizzard 
Challenge.  

Units matching the phonemic description of the targets 
are searched for in the database. A simple pruning method is 
used. The N-best units only in terms of target costs were used 
in order to speed up selection (N is set at 200 units). If no 
units are found for a particular target, the default back-off 
strategy is to look for phones or demiphones instead. If still 
no suitable units are found, any missing phone is replaced by 
silence.  

The search for the best unit sequence is performed by our 
implementation of the Viterbi algorithm. The cost function 
c(u1, u2, ..., un, t1, t2, ..., tn)  is used to calculate the cost for 
selecting a sequence of n candidate units ui, with their 
corresponding targets being ti, based on k target costs 
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The weightα  allows the fine-tuning between join and 

target costs, and is currently set to 1. The weights 
target
jw and 

join
jw are set manually. 

To measure the smoothness of a join, differences in pitch, 
spectrum and energy are taken into account. 4 join costs are 
used: 

• The Euclidean distance between the MFCC’s (12 
coefficients including the first one) on the two sides of a 
join. 

• The absolute difference in f0 (logarithmic) between the 
two sides of a join. If the phone at the join position is 
voiceless, this cost is 0. 

• The absolute difference in energy between the two sides 
of a join. 

• Adjacency (whether the demiphones on either side of 
the boundary are the left and right halves of the same 
particular instance of a phoneme in the database) 

Units are then concatenated using a PSOLA-based algorithm 
with optimal coupling [17]. No further signal processing is 
performed. 

 

Level Target cost 
Segment 
Segment 

Phonemic identity* 
Pause type (if silence)* 

Segment Position in syllable 
Syllable 
Syllable 
Syllable 
Syllable 
Syllable 

Phoneme sequence 
Lexical stress* 
ToBI accent*  
Is_accented* 

Onset and coda type [18]* 
Syllable 
Syllable 

 
Syllable 

 

Onset, nucleus and coda size* 
Distance to next/previous stressed 

syllable, in terms of syllables 
Number of stressed syllables until 

next/previous phrase break 
Syllable 

 
Syllable 

 

Distance to next/previous accented 
syllables, in terms of syllables 

Number of accented syllables until 
next/previous phrase break 

Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 

 
Word 

Position in phrase  
Part of speech* 

Is_content_word* 
Has_accented_syllable(s)* 

Is_capitalized * 
Position in phrase* 
Token punctuation* 

Token prepunctuation* 
Number of words until next/previous 

phrase break 
Number of content words until 

next/previous phrase break 

 

Table 3: The List of Target Costs Used in the Synthesizer. 
Those with a * are also calculated for the neighboring 

segments, syllables or words.  Neighboring syllables are 
restricted to the syllables of the current word. Three 

neighbors on the left and three on the right are taken into 
account. 



4.1. Multi-level Unit Selection 

Since the speech database can be quite large (e.g. 15 hours for 
voice A), unit selection synthesizers face challenges in 2 
areas: synthesis quality and speed. In order to reduce 
computational complexity and increase quality, we 
implemented a multi-level unit selection strategy in the DSSP 
synthesizer, which is a top-down approach. We aim at finding 
longer units first, before resorting to shorter ones. 

A multi-level tree is constructed based on the output of 
the front-end. In figure 2, an example of such a tree is shown. 
Each level of the tree represents a type of unit, e.g. words, 
diphones. These levels can be adapted according to the target 
language. Each node of the tree represents a single target. For 
UK English, we implemented these levels: word, syllable and 
diphone. Units are joined at diphone boundaries, so additional 
diphones are inserted at this level to fill any gap. Note that 
targets representing words or syllables which contain only a 
single phoneme are not added to the tree, since these can be 
found directly at the diphone level. With “adjacency” as a 
join cost, combinations of candidate units which are 
neighbors in the speech database are favored. 

4.2. Selection of a Synthesizer from our System for 
the Challenge  

In order to compare the quality of the different synthesizers of 
our system (the “DSSP synthesizer”), we conducted an 
experiment in Dutch recently. As an initial evaluation, we had 
6 subjects. Each listened to 100 synthesis files, i.e. 25 test 
utterances each synthesized by the four synthesizers as 
described below. The 25 test utterances are at 5 different so-
called AVI levels [19], levels used for Dutch to reflect 
differences in lexical and syntactic complexities with level 1 
being the simplest. 5 utterances were used at each level. In 
table 4, the columns represent the different synthesizers of our 
system: 

1. Unit selection using long non-uniform units [15]. 

2. Homogeneous unit selection (diphones). 

3. Multi-level unit selection (with word and diphone levels 
only); 

4. Multi-level unit selection (with phrase, word and 
diphone levels). 

The listeners were to listen to syntheses with high-quality 
headphones (Sennheiser HD555) in a quiet environment. 
They could listen to each file as many times as they wished. 
They were instructed to rate them using a scale from 1.0 to 
5.0 (MOS, or mean opinion score) and to use up to one 
decimal point. 

As we expected, synthesis quality falls as we go up the 
AVI levels (lexical and syntactic complexities). Multi-level 
(or hierarchical) unit synthesis performed the best while non-
uniform unit selection the worst. (The two configurations of 
the multi-level (or hierarchical) unit synthesizers actually 
generated identical syntheses and also MOS ratings, because 
no phrase was found/selected from the speech database for 
synthesizing any of the test utterances.) ANOVA was 
conducted and the differences were found to be statistically 
significant both across rows, i.e. AVI levels (p=0.001) and 
across columns, i.e. synthesizers (p=0.05).  

 
 1 2 3 4 mean 

AVI1 3.0 3.5 3.5 3.5 3.4 

AVI2 3.1 3.0 3.1 3.1 3.1 
AVI3 3.1 3.1 3.1 3.2 3.1 
AVI4 2.3 2.9 2.8 2.8 2.7 

AVI5 2.5 2.6 2.9 2.8 2.7 
mean 2.8 3.0 3.1 3.1  

 
Table 4: Comparison of the Synthesis Quality of the Different 
Synthesizers of our System (ANOVA - rows: p=0.000183; 
columns: p=0.02842) 
 
On the assumption that the relative synthesis quality among 
the synthesizers of our system remains the same across 
languages, we decided to use multi-level (or hierarchical) unit 
synthesis for the Blizzard Challenge this year. Note that for 
the Blizzard Challenge, 3 levels, namely word, syllable and 
diphone, were used. 

5. Results and Discussion 
Figures 3 and 4 show the results of voices A and B, 
respectively. Our system is identified by the letter G.  System 
A is actually natural recordings of the same speaker as in the 
speech database. Our calculation of the mean MOS values of 
all participating systems reported in these sections does not 
include systems A, or the two benchmark systems, B and C. 
System B is a Festival Benchmark system. This is a standard 
Festival unit-selection voice built using the same method as 
used in the CSTR entry for Blizzard 2007 [9]. System C is an 
HTS Benchmark system. This is a standard speaker-dependent 
HMM-based voice, built using a similar method to the HTS 
entry for Blizzard 2005 [20]. Statistically significant 
differences among systems were identified by applying 
Wilcoxon's signed rank with Bonferroni correction [21]. 

For voice A, the MOS indicates reasonable quality for our 
system (mean MOS: 2.8, which is just below the mean of the 
participating systems, 2.9). However, the quality of our voice 
A is not significantly different from that of the following 

_dh d_ _k t_thus sh he iiw waited keeping ngp perfectly iyk quiet

dhuhs hii weit ti id kiip pi ing p@@r @@rf fikt tl liy kwai@t

dhuh uhs hii wei eit id kii iip ing p@@r fi ik kt liy kw wai ai@ @t

word

syllable

diphone

 

Figure 2: Example of a Multi-level Selection Tree: “Thus he waited, keeping perfectly quiet.”  



systems: C, E, F, H, L, M, Q, T and V. Our voice B was rated 
slightly better by listeners (mean MOS: 2.9). The mean score 
on the quality of voice B of all systems was 2.8. The quality 
of our voice B is not significantly different from that of 
systems B, C, F, L, M, O and T.  

When comparing the quality of our voices A and B, the 
results are surprising, since voice B uses only a small subset 
of the data as in voice A. Based on the median MOS of those 
utterances which were used to test both voices A and B, we 
did not find any significant difference between our two voices 
(Wilcoxon's signed rank: p = 0.23). However, in half of these 
cases, voice B received a higher median MOS. When 
analyzing the selected units in syntheses, we found little 
overlap between our voices A and B even for those utterances 
which received the same median MOS for both voices. 

We would expect that the similarity rating of the voice to 
the original recordings would be close to 5, but this is not the 
case. Raters probably also listened to the naturalness of 
syntheses when judging on similarity. Our system performed 
somehow better on similarity than naturalness (MOS for our 
voice A: 3.1 c.f. mean: 3.0; MOS for our voice B: 3.0 c.f. 
mean: 2.8). 
Our system did not perform very well on the semantically 
unpredictable sentences since our mean word error rate 
(WER) for both voices is 45 %, which is slightly higher than 
the means (voice A: 40%, voice B: 44%). It must be noted 
that even if recordings of natural speech are used, WER 
remains relatively high (voice A: 22%, voice B: 25%). For 
voice A, the WER of our system does not differ significantly 
from those of systems E, F, H, K, L, M, N, O, Q and R. The 
WER of our voice B is significantly lower than that of system 
R, but higher than those of systems C, Q, T and V. 

There is still room for improving our segmentation. The 
models for segmentation were trained on the Arctic subset of 
the data only. The DSSP synthesizer also contains many 
hand-tuned weights but current settings might be sub-optimal. 
Algorithms for training weights automatically could help 
improve the system. We are further analyzing the data to find 
other ways to improve. 

6. Conclusions 
In this paper, we described the DSSP synthesizer and the two 
UK English voices submitted to the Blizzard Challenge. 
Entering the challenge provided us with positive experience, 
resulted in the development of a UK English front-end and 
brought about various improvements to our synthesizer. The 
results of our syntheses indicate reasonable quality, especially 
considering that the DSSP synthesizer is still under 
development. Further work will focus on the improvements 
on quality, robustness and speed, and fully automating the 
voice-building process. 
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Figure 3: Results for Voice A 

 

 

Figure 4: Results for Voice B 


