
CircumReality functionality delta: Blizzard Challenge 2007 to 2008 

Mike Rozak
 

Xac, Darwin, NT, Australia 
Mike@mXac.com.au, http://www.CircumReality.com 

 

Abstract 

Although performing poorly in the Blizzard Challenge 
2008, the CircumReality text-to-speech engine improved 

significantly from the Blizzard 2007 test. The engine’s 

acoustic model, prosody model, and acoustic synthesis were 

improved between tests. This paper discusses the 
CircumReality engine’s test results and reasons why it did 

poorly. The paper provides a list of improvements that 

resulted in higher test scores in 2008, as well as 

implementation details one change: objectively-calculated 
target costs. 

 

Index Terms: speech synthesis, games, Blizzard 

Challenge 

1. Introduction 

The Blizzard Challenge was devised “to better understand 

and compare research techniques in building corpus-based 

speech synthesizers on the same data. The basic challenge is 

to take the released speech database, build a synthetic voice 
from the data and synthesize a prescribed set of text 

sentences. The sentences from each synthesizer will then be 

evaluated through listening tests.” [1] Participants then write a 

paper discussing their results. Over the course of years, the 
intent of the competition and publication cycle is to improve 

the quality of TTS engines. 

The CircumReality TTS engine is designed for the 

CircumReality multiplayer online game. [2] The engine uses 
concatenative synthesis with a trained prosody model. Half-

phone units are used with a triphone context. 

The engine was first entered in the Blizzard 2007 

challenge and did poorly, ranking last on nearly all the tests.[3] 
Although the CircumReality engine ranked poorly in the latest 

Blizzard 2008 challenge, its scores improved significantly 

from 2007. This paper discusses why the CircumReality 

engine did poorly, what changes to the engine significantly 
improved the quality, and implementation details of one 

change: objectively calculated target and join costs. 

2. Blizzard challenge 2008 results 

compared to 2007 

Although CircumReality TTS engine did poorly in the 2007 

and 2008 challenges, it showed significant improvement. 
CircumReality’s mean-opinion score (MOS) rose 0.7, 

from 1.3 for the “A” voice in 2007, to 2.0 in 2008. (See 

Figures 1a and 1b.) The average of all other engines’ MOS 

(excluding the original speaker and two 2008 benchmark 
engines, Fest and HTS) was 2.95 in 2007 and 2.92 in 2008, 

down slightly. Of course, the 2007 and 2008 voices were 

different, so only large changes in score or relative to other 

engines are meaningful. Nor are the participants in 2008 the 

same as 2007. 

In contradiction, the Festival benchmark engine’s MOS 

improved from 3.0 to 3.3 despite the average engines’ MOS 

declining slightly. Since participants in both years are largely 
the same, I suspect this represents either an engine bias 

towards American English, or voices recorded with 2007’s 

“news presenter” prosody. 

 

 

Figure 1a: Blizzard 2007 MOS 

 

 

Figure 1b: Blizzard 2008 MOS 

CircumReality performed relatively better with the word-

error-rate test (WER), both in 2007 and 2008: 

 

 

Figure 2a: Blizzard 2007 WER 

1

1.5

2

2.5

3

3.5

4

4.5

5

O
ri
g P A K O J C H

Fe
st E M N D Q F G

C
ir
cu
m

A

B

1

1.5

2

2.5

3

3.5

4

4.5

5

O
ri
g J S K

Fe
st P V O M

H
TS

L Q E G F H T D R I

C
ir
cu
m

A

B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

J K A

Fe
st M C P N O Q H D E

C
ir
cu
m F G

A

B



 

Figure 2b: Blizzard 2008 WER 

CircumReality’s mean WER only dropped 2%, from 47% 

in Blizzard 2007 to 45% in Blizzard 2008. The mean WER 

for all other voices (excluding the original speaker and two 
2008 benchmark voices, Fest and HTS) was 35% in 2007, and 

40% in 2008, an increase of 5% due to the 2008 voice’s 

ebullient British prosody. The benchmark engine, Festival, 

also had an increased WER, increasing from 25% in 2007 to 
35% in 2008. Despite the aggregate WER increasing, 

CircumReality’s WER decreased marginally. 

3. Failure analysis 

3.1. Acoustic model 

As discussed in CircumReality’s Blizzard 2007 paper [3], 

the CircumReality engine uses an acoustic feature set 

consisting of a voiced and unvoiced spectrum. The feature set 
was chosen to enable easy voice transformations, important 

for games. Unfortunately, the feature set introduces vocoder-

like artifacts, more prominent in some voices than others. The 

2007 CircumReality TTS engine (CR2007) used additive 
sine-wave synthesis to synthesize the wave. 

The Blizzard 2007 voice exposed many problems with the 

acoustic feature extraction. Between Blizzard Challenges, the 

feature extraction algorithms were improved, but the Blizzard 
2008 voice still exhibited significant artifacts. 

The feature set had pitch-synchronous PCM added. A full 

wavelength was included with each frame, and time-stretched 

to the required wavelength when synthesized. PCM 
functionality was originally included in the feature set for 

testing and debugging purposes only. Its functionally was 

kept to a minimum since PCM isn’t flexible enough for voice 

transformation, an important feature for game synthesis. 
Consequently, TD-PSOLA was not implemented to save 

development time, despite TD-PSOLA sounding better. 

The 2008 CircumReality TTS engine (CR2008) could 

synthesize with either PCM or additive sine-wave synthesis. 

PCM synthesis improved acoustic naturalness, but introduced 

other errors: 

Overlapping pitch-synchronous PCM with a Hanning 

window reduces unvoiced energy at high frequencies, 
particularly impacting the “brightness” of the “s” phoneme. 

Energy at high frequencies was amplified to counteract this 

effect, improving the intelligibility of “s”. Unfortunately, the 

high-frequency energy boost changed the voice’s quality, 
impacting the “similarity” score. 

PCM is a proverbial double-edged sword. PCM produces 

high fidelity speech synthesis, but introduces large artifacts 

when pitch shifted. The target costs for pitch-shifting PCM 
were calculated and included in the unit-selection search. (See 

section 5.). The costs, as expected, were large. 

Even using large F0 target costs, the unit-selection search 

would occasionally select a unit requiring a substantial pitch 
shift, producing “hiccups” in the speech synthesis. The 

hiccups undoubtedly lowered the voice’s MOS, counteracting 

some of the MOS improvements gained by using PCM. 

To minimize the hiccups, units’ original F0 contours were 
averaged into the synthesized-prosody’s F0 contours, 

producing higher acoustic quality at the expense of lower 

prosody quality. 

Extremely high F0 target costs outweighed all other join 
and target costs: duration, energy, and phoneme context. 

Consequently, the use of PCM forced less well-fitting units to 

be substituted, reducing the voice’s quality. 

At the time of the 2008 test, PCM sounded marginally 
better than additive sine-wave synthesis, despite all its 

negative consequences. PCM was used for the tests. 

3.2. Prosody model 

For computer games, personality is often more important 

than intelligibility. CircumReality’s synthesized prosody is 

designed to try and reproduced the prosody of the training 

voice, often at the expense of intelligibility. CR2008’s 
prosody algorithms produce lower-quality prosody than hand-

generated rules. 

The 2008 speaker spoke in an “ebullient” manner that, 

even before synthesis, was more difficult to understand than 
the “news presenter” prosody spoken by the 2007 Blizzard 

Challenge voice. 

Ebullient speech exposed weaknesses in CR2008’s 

prosody algorithms that weren’t as obvious in the “news 
presenter” voice from 2007. CR2008 wasn’t able to 

synthesize ebullient prosody that well, certainly less well than 

it could synthesize “news presenter” prosody. 

CR2008 did manage to approximate ebullient prosody. 
Unfortunately, in partially succeeding, CR2008’s prosody 

modeling made the voice more difficult to understand because 

ebullient prosody is inherently more difficult to understand 

than “news presenter” prosody, even when spoken by a real 
person. 

 

 

Figure 3: Blizzard 2008 similarity scores 

When listening to the test sentences, I thought 

CircumReality mimicked the voice’s prosody better than 
many of the other engines. I expected CircumReality’s 

similarity score (see Figure 3) to be relatively higher than its 

MOS score. This didn’t happen; both the MOS and similarity 

scores, and their positions relative to other engines, were 
approximately the same. Either my perception of how well 

CircumReality mimics prosody is incorrect, or prosody is 

only a very minor part of how people perceive voice 

similarity. Acoustic similarity seems to be a much larger 
component, at least when listeners are presented with an 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
O
ri
g T V J

H
TS

Fe
st

I P S M E K F Q L H

C
ir
cu
m O G R D

A

B

1

1.5

2

2.5

3

3.5

4

4.5

5

O
ri
g J S

Fe
st K M P O G F H L E Q V

H
TS D R T

C
ir
cu
m

I

A

B



unfamiliar voice. If the voice were Winston Churchill’s, with 

its own unique prosody, would prosody modeling count for 
more? 

CR2008’s prosody model failed in other ways: 

As already stated, the prosody model was hindered by the 

need for PCM to minimize F0 changes. 
Synthesized prosody was further impaired by problems 

with F0 detection. Pitch doubling would occasionally happen, 

particularly at the end of utterances. Units that are pitch-

doubled are normally eliminated from the acoustic model 
because an F0-mismatch results in distorted features that 

produce a low ASR score; low-scored units are automatically 

discarded. The prosody model doesn’t have any equivalent F0 

integrity checks, so a pitch-doubled word results in 
synthesized prosody that suddenly doubles F0 for a word or 

two, usually at the end of a sentence. 

4. Changes between Blizzard 2007 and 

Blizzard 2008 

Below is a list of major changes between CR2007 and 

CR2008. All of these changes produced at least minor 
improvements to voice quality. Some will be discussed in 

detail, in section 5. 

4.1. General changes 

 Bugs that produced minor reductions to speech quality 

were found and fixed. 

4.2. Acoustic model 

 F0 detection was improved by assuming that F0 stayed 

near to the median F0 throughout the sentence. 

 Acoustic feature extraction was improved. The same 

features were used, but new algorithms more-accurately 

extracted the features from the training utterances. 

 Pitch-synchronous PCM was stored, allowing CR2008 to 

synthesize using PCM. 

4.3. Unit selection 

 CR2007’s voice-construction tool ran out of 32-bit 

memory when building the Blizzard 2007 voice, limiting 

the voice to 20,000 units. CR2008’s tool was rebuilt with 
64-bit pointers, easily allowing a 265,000 unit voice. 

 When building a voice, all units were scored by a 

combination of ASR and target costs based on F0, 

duration, and energy. CR2008 automatically discarded the 

bottom 25% of all units to minimize bad units. 

 In CR2007’s voice building tool, an ASR model for each 

triphone was trained and used to compute the unit’s score. 

In CR2008’s tool, nine ASR models for each triphone 

model were calculated as a two-dimensional matrix of 

low, medium, and high F0 by low, medium, and high 
energy. This improved the voice’s clarity and eliminated 

some “muffled” units. 

 In CR2007’s voice building tool, ASR was used to test 

how similar the unit sounded compared to its triphone 

model. In CR2008, this value was modified based on how 
differently the unit compared to other phonemes, 

comparing the unit against ASR models for similar 

phonemes. This discouraged units that were in-between 

two phonemes, producing a voice that was easier to 
understand. 

 CR2008 differentiates between triphones at the start, 

middle, or end of a word. CR2007 did not. 

4.4. Prosody model 

 The prosody model was refined. The same basic 

principles were used. 

4.5. Prosody synthesis 

 In CR2008, F0 and duration of synthesized units are now 

affected by the original unit’s F0 and duration. When 
PCM acoustic synthesis is enabled, F0 from the original 

unit is weighted much more strongly than the F0 from the 

synthesized prosody model. 

4.6. Acoustic synthesis 

 The acoustic-unit-selection Viterbi-search was refined. 

 The acoustic unit search for CR2007 voice used ad-hoc 

target and join costs. For CR2008, these were calculated 

using ASR. See section 5. 

 F0, duration, and energy of the prior unit are included in 

the target cost to encourage smooth transitions when non-

contiguous units are used. 

 As stated earlier, CR2008 can synthesize using PCM 

instead of additive sine-wave synthesis. 

5. Objectively calculating target and join 

costs 

Once change between CR2007 and CR2008 warrants further 

discussion. 
In CR2007, target costs were based on ad-hoc 

guestimates. For example: Left/right context substitutions 

were assigned a very high target penalty, around ten times 

higher than F0, energy, and duration target costs. 
The MARY-TTS Blizzard 2007 paper [4] implied that 

objective target costs for concatenative synthesis hadn’t been 

calculated before. This challenge intrigued me so I decided to 
calculate the costs. I later learned that the USTC/iFlytek 

Blizzard 2007 paper [5] discussed target cost calculations for 

HMM synthesis. I’ll discuss the differences later. 

The target-cost calculating tool was created, and values 
were calculated from 9000 sentence-length recordings of my 

own voice. What follows is a list of the calculated target-cost 

values, and the algorithms used to calculate them. 

5.1. F0 target cost 

To calculate F0 target costs, an ASR model was trained 

for every triphone. (To reduce computation time and memory, 

the left and right content phonemes of the triphone were 
grouped into one of 17 groups. For example: “m”, “n”, and 

“ng” were placed in the same group.) Importantly, not all 

versions of the triphone unit were included in the ASR model; 

only phonemes whose F0 fell near the median F0 for the 
triphone were trained. 

In a second pass, all of the phonemes in the training data 

were compared against the F0-limited triphone ASR models. 

The ASR scores were graphed on a scatter plot. 
 



 

Figure 4: F0 target costs for (l, r) – eh1 – (m, n, ng). 

The vertical axis shows the ASR score, with large 

values being poor matches. The horizontal axis shows 

the number of octaves that F0 was above or below the 
triphone’s median F0. 

To ensure that enough data existed to produce an accurate 

linear fit, the data points were combined into four sets based 

on broad phoneme categorization. Phonemes were 
categorized into voiced (V) or unvoiced (U), and plosive (P) 

or non-plosive (N). For example: The phoneme, “m”, is 

voiced non-plosive (VN), while “t” is unvoiced plosive (UP). 

 

 Per octave higher Per octave lower 

UN 3.26 6.97 

UP 2.53 1.13 

VN 5.43 6.52 

VP 3.76 3.71 

Table 1: F0 target costs per octave the target is higher 

or lower than the original data. 

The calculated F0 target costs, although lower than 

expected, make intuitive sense; F0 target costs for unvoiced 
plosives (UP) are much lower than costs for voiced non-

plosives (VN). 

5.2. F0 target costs with PCM 

The F0 target costs in 5.1 were calculated assuming that 

additive sine-wave synthesis would be used. Synthesizing 

with PCM requires additional target costs since even small F0 

shifts in PCM produce extreme artifacts. 
To calculate the PCM F0 target costs, the voiced and 

unvoiced spectrums were shifted up and down by half an 

octave, simulating a PCM F0 shift of half an octave. The 

shifted spectrums were compared against the triphone ASR 
models. The ASR score for the original un-shifted unit was 

also calculated, and subtracted from the two shifted ASR 

scores. All the shifted scores were averaged based on UN, 

UP, VN, and VP. 
 

 Per octave higher Per octave lower 

UN 18.28 18.82 

UP 11.06 7.44 

VN 20.94 19.8 

VP 10.9 8.8 

Table 2: PCM F0 target costs per octave the target is 

higher or lower than the original data. 

PCM F0 target-cost values are very high, especially for 

non-plosives (UN and VN). Because TD-PSOLA has fewer 
acoustic artifacts than the simplistic PCM synthesis I used, I 

suspect that TD-PSOLA would have produced lower F0 

target-costs, although still significant. 

5.3. Energy target costs 

Energy target cost was calculated using the same basic 

approach as F0 target costs. Instead of training an ASR model 
with F0’s near a target, only units with an energy-value near 

the target energy were trained. 

 

 Energy doubled Energy halved 

UN 5.95 4.94 

UP 6.58 1.62 

VN 4.04 6.37 

VP 7.11 3.13 

Table 3: Energy target costs based on the target’s 

energy relative to the unit’s original energy. 

5.4. Duration target costs 

Duration target costs were calculated in the same way that 

F0 and energy target costs were calculated. 
 

 Duration doubled Duration halved 

UN 0.05 1.5 

UP 3.02 15.53 

VN 1.04 5.04 

VP 4.45 4.81 

Table 4: Duration target costs based on the target’s 

duration relative to the unit’s original duration. 

5.5. Start/end word target costs 

CR2008 differentiates units occurring at the start, middle, 

or end of a word, and applies a target-cost penalty if there’s a 

mismatch. 

To calculate the target cost, four ASR models were 
trained per triphone: At the start of a word, middle of a word, 

and end of a word, and triphones that were the entire word. 

A second pass compared every phoneme in the training 

data against each of the four ASR models for the triphone. 

The ASR score from the correctly-matched word-position 

model was subtracted from all the others so the target-cost 

penalty for an exact match is always 0. 

All of the ASR scores were averaged: 
 

 Target-cost penalty 

No mismatch 0.00 

Start-of-word mismatch 3.56 

End-of-word mismatch 3.38 

Start and end-of-word mismatch 5.61 

Table 5: Target-cost penalty for word-position 

mismatches. 

5.6. Mismatched left/right context target costs 

CircumReality’s unit selection search can substitute in a 

different triphone with the same centre phoneme. For 

example: The “a” in “cat” might be used to synthesize the 

words “cap” or “bat” even though the “a” in “cap” and “bat” 
should use different triphones. 

Calculating the context target costs requires an enormous 

number of ASR models to be trained: 

 

0

5

10

15

20

25

30

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8



 Exact match ASR models – An ASR model was trained 

for every triphone, using the left and right phonemes as 

the left and right triphone context. 

 Narrow-group ASR models – The left and right 

phonemes were categorized onto one of 17 groups, and 

the triphone trained based on the left and right phonemes’ 

groups. 

 Broad-group ASR models – The left and right phonemes 

were categorized into one of 5 groups, and the triphone 
was trained based on the left and right phonemes’ groups. 

 

In a second pass, every phoneme in the training database 

was compared against numerous “exact match”, “narrow 
group” and “broad group” ASR models: 

 

1. “Exact-match” target cost– The phoneme was compared 

against the appropriate “exact match” ASR model. 
2. “Mismatched-stress” target cost – If the right context 

was a stressed or unstressed phoneme, then the phoneme 

was compared against the “exact match” ASR model of 

the opposite stress-context. For example: If the right 
context was “eh1”, the phoneme was compared against 

the model with “eh0” as the right context. 

3. “Mismatched-phoneme in narrow group” target cost – 

The phoneme was compared against all the “exact match” 
ASR triphone models with varied right contexts, such 

that: (a) the right context phoneme was part of the true 

right-phoneme’s “narrow group”, and (b) the right 

context’s phoneme was not a stressed or unstressed 
version of the true right-context phoneme. The ASR 

scores were then averaged. 

4. “Mismatched-phoneme in broad group” target cost – 

The phoneme was compared against all possible right-
context variations of the “narrow group” triphone ASR 

models, except the phoneme’s true “narrow group” ASR 

model. The results were averaged. 

5. “Mismatched-phoneme not in broad group” target 
cost – The phoneme was compared against all the “broad 

group” triphone ASR models whose right-context did not 

match the phoneme’s true right context. The results were 

averaged. 

6. To ensure that an exact left/right context match would 

have 0 target cost, the “exact match” score from step 1 

was subtracted from all the other scores (steps 2 through 
5). 

7. Steps 1 through 6 were repeated, but the left context was 

varied instead of the right. 

 
The resulting target costs are: 

 
 Left context 

mismatched 

stress 

Left context 

mismatched 

phoneme in 

narrow group 

Left context 

mismatched 

phoneme in 

broad group 

Left context 

mismatched 

phoneme not 

in broad 

group 

UN 0.67 1.30 1.67 2.90 

UP 0.3 1.47 2.13 4.84 

VN 0.43 0.99 1.51 2.22 

VP 0.51 1.20 1.60 5.76 

Table 6a: Left context target costs. 

 Right 

context 

mismatched 

stress 

Right context 

mismatched 

phoneme in 

narrow group 

Right context 

mismatched 

phoneme in 

broad group 

Right context 

mismatched 

phoneme not 

in broad 

group 

UN 1.28 7.41 7.44 5.87 

UP 2.16 4.83 5.29 11.21 

VN 2.71 3.30 2.62 4.36 

VP 3.02 7.46 5.61 8.54 

Table 6b: Right context target costs. 

As anticipated, mismatched plosives (P) tend to incur a 

higher target cost then non-plosives (N). Unexpectedly, right-

context-substitution target costs are much higher than left-

context costs. 
Context target costs were much lower than anticipated, 

less than one tenth the ad-hoc values used in CR2007. 

The data also illustrates some noise. Theoretically, all 

values should be monotonically increasing from left to right. 
Values don’t always do this, as in the case of the right context 

being an unvoiced non-plosive. 

5.7. Non-contiguous join costs estimates 

Join costs between two units were calculated using a 

distance measure between the spectrums of the two boundary 

frames. With thousands of possible joins considered by the 

unit-selection Viterbi search, this process can be very slow. 
Pre-calculating all the join costs is not an option for CR2008 

due to the memory and file size requirements of games. 

As an optimization, the “mean join costs” based on 

diphones are calculated and used to reduce the number of 
candidates for which accurate boundary scores must be 

calculated. The unit-selection search’s hypothesized units are 

narrowed down to the top 100 candidates by sorting based on 

their anticipated scores, including all the target costs and the 
mean join costs. Join-costs are then accurately calculated 

between the existing hypothesis and 100 new candidates. (See 

section 5.8.) 

To calculate the mean join costs, a diphone ASR database 
is trained. Unlike the other ASR training, only the last frame 

in the first unit is trained – where the join occurs. CR2008’s 

ASR comparison for a single frame is exactly the same 

mathematics as used to calculate join costs. 
ASR scores for the diphones are calculated and averaged 

into a database. As with other target cost calculations, 

phonemes are categorized into one of four groups: 

 
 Right 

context is 

UN 

Right 

context is 

UP 

Right 

context is 

VN 

Right 

context is 

VP 

Left 

context is 

UN 

20.98 17.38 17.88 13.75 

Left 

context is 

UP 

23.42 25.67 16.51 22.20 

Left 

context is 

NV 

21.42 22.52 11.80 15.89 

Left 

context is 

VP 

24.71 31.30 12.59 13.46 

Table 7: Mean join-costs given the left and right 
contexts. 

5.8. Join costs 

Join costs between non-contiguous units were calculated 

using a distance measure between their adjacent spectrums. 



As shown earlier (Section 5.7), the mean join cost was around 

20, with higher values indicating poorer joins. 
The unit’s score and all the target costs have a “per 

second” connotation. When the unit-selection Viterbi search 

includes them in the hypothesis score, the ASR scores are 

scaled by the unit’s duration. 
Join costs are different because they are the calculation of 

an instantaneous value, over one frame, not the duration of the 

phoneme. Because join cost is instantaneous, the join cost 

value should theoretically be scaled by one frame (5 
milliseconds) and added to the Viterbi search score. 

This doesn’t work well in practice. A scaling value of 25-

50 milliseconds produces better-sounding results. I haven’t 

yet determined why the theoretical value doesn’t work well. 

5.9. USTC/iFlytek 

I hadn’t noticed the Blizzard 2007 USTC/iFlytek paper [5] 

discussing their target and join cost calculation methods until 
long after implementing my own algorithms. 

CR2008’s target/join-cost algorithms differ from those 

iFlytek’s in a number of ways: 

 CR2008 uses a different acoustic feature set than iFlytek, 

so per-frame acoustic distance calculations are handled 
differently, but with the same intent. 

 iFlytek uses F0 as a join cost, probably because the 

iFlytek’s acoustic synthesis employs a PCM acoustic 

representation. Since PCM doesn’t handle pitch bending 

well, little to no pitch bending would be applied to 
iFlytek’s synthesized units, leaving only F0 mismatches at 

joins. CR2008 is designed for games, where transplanted 

prosody is required. F0 is dictated by the transplanted 

prosody or prosody model. Synthesized F0 is never the 
same as the original unit’s F0. Consequently, F0 must be 

part of the “per second” target cost instead of the 

instantaneous join cost. 

 iFlytek’s duration model is built into the same framework 

as its acoustic and concatenation models. F0 and energy 
are also included in that framework. CR2008 separates 

F0, duration, and energy into a separate model. They’re 

either provided by a prosody model or transplanted 

prosody. In CR2008, the prosody model drives F0, 
duration, and energy, in turn driving the unit selection. 

Conversely, iFlytek’s HMM synthesis, with no explicit 

prosody model, appears to let unit selection drive F0, 

duration, and energy, which in turn drives prosody. 

 Context mismatch costs are implicitly handled by 

iFlytek’s HMM acoustic distance measures. CR2008 must 

explicitly include them. 

 

6. Conclusions and future work 

The CircumReality TTS engine improved significantly 

between the 2007 and 2008 Blizzard Challenges. This was 

achieved through a variety of changes in the acoustic model, 

unit selection, prosody model, and acoustic synthesis. 
Using PCM in CR2008 was a mistake; although it 

improved the acoustic quality of the voice, PCM’s F0 

inflexibility hurt many other TTS subsystems. TD-PSOLA is 

expected to sound better, but isn’t ideal for games, so it may 
not be worth the experimental effort. CR2008’s acoustic 

feature extraction algorithms have been improved in the 

months since submitting synthesis results for the 2008 

Blizzard Challenge. The quality of the additive sine-wave 
synthesis voice now matches or exceeds the PCM voice. 

I plan to improve acoustic synthesis in a number of ways: 

1. More-accurate ASR, since ASR is the foundation of good 

unit selection. 
2. More-accurate unit scores, such as different scores for 

each half of the unit. 

3. More-accurate target and join costs, using more than the 

four groups (UN, UP, VN, VP) discussed here. 
4. The join-cost scaling problem from 5.8 needs to be 

solved. 

5. Smoother unit joins are needed, the exact location of the 

join determined by ASR. 
6. Prosody tradeoffs that improve the aggregate (unit + 

target + join) scores for a synthesized utterance. 

 

The prosody model needs to be improved too, although 
the tradeoffs between intelligibility and mimicking the 

original voice’s prosody will continue to be an issue. 

7. References 

[1] Anonymous, “The Blizzard Challenge 2008”, CMU. Online: 

http://festvox.org/blizzard/, accessed on 4 July 2008. 

[2] Rozak, M., “What is CircumReality?”, mXac. Online: 

http://www.CircumReality.com, accessed on 16 July 2008. 

[3] Rozak, M., “Text-to-speech Designed for a Massively 

Multiplayer Online Role-Playing Game (MMORPG)”, in The 

Blizzard Challenge 2007, Bonn, Germany. mXac. Online: 
http://festvox.org/blizzard/bc2007/index.html, accessed on 16 

July 2008 

[4] Schroder, M. and Hunecke, A., “MARY TTS Participation in 

the Blizzard Challenge 2007”, in The Blizzard Challenge 2007, 

Bonn, Germany. Online: http://festvox.org/blizzard/bc2007/ 

index.html, accessed on 16 July 2008 

[5] Zhen-Hua Ling, Long Qin, Heng Lu, Yu Gao, Li-Rong Dai, 

Ren-Hua Wang, Yuan Jiang, Zhi-Wei Zhao, Jin-Hui Yang, Jie 

Chen, Guo-Ping Hu, “The USTC and iFlytek Speech Synthesis 

Systems for Blizzard Challenge 2007”, in The Blizzard 

Challenge 2007, Bonn, Germany. Online: http://festvox.org/ 

blizzard/bc2007/index.html, accessed on 16 July 2008 


