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Abstract

The 2008 Blizzard speech synthesis challenge provided participants
with an opportunity to evaluate their systems in UK English and Man-
darin. This paper describes the work behind three IBM systems sub-
mitted to the challenge for these two languages. The systems presented
are concatenative unit-selection text-to-speech synthesis systems con-
sisting of a core algorithmic base, as well as some algorithmic vari-
ants introduced not just to address the language-specific component of
the synthesis engines (i.e., text-processing front-end) but also to better
serve the different properties of different language types (i.e., tonal na-
ture of Mandarin). The resulting systems were evaluated with several
tasks designed to address issues like overall naturalness, intelligibility
and the preservation of speaker identity. All the IBM systems submit-
ted achieved very good performance in the two languages across the
different tasks reported in this paper.
Index Terms: speech synthesis, unit selection.

1. Introduction
The Blizzard Challenge was conceived in order to better understand
and compare research techniques in building corpus-based speech syn-
thesizers. Now in its fourth year, the challenge aims to circumvent the
limitation of establishing comparisons across techniques presented in
the literature given that these are commonly developed on different lan-
guages, different datasets, and evaluated using variable procedures. To
this effect, the organizing committee of the challenge releases one or
more fixed databases to the participants with a series of task defini-
tions, and collects the output of the systems to evaluate under a common
framework.

For the year 2008 installment, the challenge provided a database of
approximately 15 hours of UK English recorded by a male speaker, and
a database of approximately 6 hours of Mandarin spoken by a female
speaker, both recorded at 16kHz. Annotations for the English corpus
consisted of utterance-files for each recording containing the output of
the Festival text processing module, as well as a breakdown by domain
of the following subcorpora making up the recording script: (1) Arctic
(the phonetically-balanced Arctic dataset [1]); (2) Carroll (dialog-rich
extracts from stories by Lewis Carroll); (3) Unilex (isolated words, se-
lected for phrase-boundary coverage); (4) Emphasis (carrier sentences
containing emphasized words); (5) Addresses; (6) Spelling; (7) News
(sentences from the British press, such as the Herald). Additionally, the
Unisyn Lexicon containing regional variations of English lexical items
was made available by the organizers. Annotations for the Mandarin
corpus contained the scripts and automatically generated Pinyin tran-
scripts of the recordings.

The tasks consisted of building one voice dataset for Mandarin us-
ing the entire corpus, and two voice datasets for English –one using the
full set of recordings and one using only the Arctic subset, which we
will refer to as the English Voice A and Voice B respectively. In this
paper we describe the IBM submissions to each of these categories.

2. System Description
2.1. Building the Concatenative Database

2.1.1. English

Two datasets were produced for English, as required by the specifica-
tions of the challenge, using the full and Arctic sets of the corpus. In
the description that follows, any type of processing that operated on a
single utterance at a time (e.g., any type of signal processing; front-
end text processing) was performed only once for the entire corpus and
reused when building the smaller set. However, any type of batch pro-
cessing where the amount of data used influenced the outcome (e.g.,
alignments; building prosody trees) was performed separately for each
set. Following this, we obviate making the distinction when unneces-
sary: by dataset we mean a relevant set.

Signal Processing: To conform to the standard IBM voice-
building process, the speech waveforms were first upsampled to 22kHz.
The rest of the voice-building and run-time synthesis described here is
performed at this rate; final submissions were downsampled to 16kHz
to conform to the specifications of the challenge.

The English utterances often contained fairly long leading and
trailing silences, something which was observed to degrade the qual-
ity of alignment against the silence models. To reduce this effect, the
waveforms were trimmed by monitoring short-time energy values, and
eliminating leading and trailing portions of the speech that continuously
fell under a threshold value. The resulting speech waveforms were then
high-pass filtered at 75 Hz to reduce any potential background and elec-
trical noise, and the instances of glottal closure were automatically de-
tected and saved for the waveform generation step at run-time synthesis
[2].

Alignments: Of the information provided in the Festival utter-
ance files for the English dataset, only the script item was used to align
the acoustic waveforms against; all other information (like phone-level
alignment) was discarded. The IBM TTS system for English uses a
third-of-phone sized unit (i.e., the portion of speech aligned with each of
a usually 3-state left-to-right HMM model), and therefore requires sub-
phonetic level alignment. Prior to aligning the waveforms, the recording
script was run through a rules-based front-end to normalize the text, and
predict pronunciations and prosodic structure from it. The final align-
ment dictionary was obtained by merging pronunciations from three
different sources: (i) pronunciations predicted by the front-end, (ii) pro-
nunciations contained in an in-house dictionary for British English con-
taining standard Received Pronunciation (RP) baseforms, and (iii) the
RP baseforms extracted from the Unisyn lexicon.

The speech was encoded as Mel Cepstral coefficients plus delta
and delta-delta values, and run through several iterations of align-
ments, starting with an alignment against a reference pre-trained acous-
tic model, and building speaker- and context-dependent models from
there on (see [2] for more details).

Unit Clustering: Each of the HMM-state-sized portions of speech
contained in the alignment determines a synthesis token available to the
synthesizer at run time. All tokens belonging to each unit type were
collected and clustered using a decision tree that asks questions about



the neighboring phonetic context during training, and can then be used
at run-time to map a given phonetic context to a list of suitable candi-
dates that can be searched over. The splits in the tree were induced by
asking questions about a 5-phone phonetic context (middle phone, plus
2 preceding and following phones), and growth was monitored by ex-
amining log likelihood on spectral frames associated with a particular
context. The final unit-clustering trees for Voices A and B contained
about 37K and 9K leaves, respectively.

Prosody Models: The goal of prosody models is to predict energy,
duration and pitch targets for each unit type at run time. These models
were implemented also as decision trees that operate on a set of features,
which generally depend on phonetic context and/or can be derived from
the output of the front-end text analysis.

Energy-prediction trees were built for each phone in the inventory
by pairing up the observed RMS value of each phone instance with its
5-phone phonetic context. Using this context as predictor, trees were
grown to yield about 22K leaves for the Voice A and 3K leaves for
Voice B.

A single decision tree was built to predict one duration value per
phone unit based on the following 24-dimensional feature vector sum-
marizing phrase-, word-, syllable- and phone-level information avail-
able from the front-end analysis:

1 Phrase type (e.g., question, statement, etc.)

2 Sentence-level prominence of word

3 Number of words to start of phrase

4 Number of words to end of phrase

5 Part of speech of word

6 Number of syllables to the end of word

7 Order of current syllable within word

8 Total number of syllables in word

9 Lexical stress of syllable

10 Identity of current phone

11 Voicing status of current phone

12 Broadclass (e.g., vowel, fricative, etc.) of current phone

13-24 Features (10-12) for the 2 preceding and 2 following phones
The duration-prediction decision trees for Voice A and B contained ap-
proximately 900 and 700 leaves respectively.

Finally, decision trees were trained to predict three pitch target
values for the sonorant region of every syllable [3]. The following
23 observations (summarizing phone-, syllable-, phrase-, sentence- and
utterance-level information) are gathered for each syllable, plus its two
preceding and following syllables, to produce a final 115-dimensional
vector used as input to the tree:

1. Number of sentences to start of this utterance

2. Number of sentences to end of this utterance

3. Number of phrases to start of this utterance

4. Number of phrases to end of this utterance

5. Sentence type

6. Number of phrases to start of this sentence

7. Number of phrases to end of this sentence

8. Number of words to start of this sentence

9. Number of words to end of this sentence

10. Phrase type

11. Phrase-level prominence of this word

12. Number of words to start of this phrase

13. Number of words to end of this phrase

14. Number of syllables to start of this phrase

15. Number of syllables to end of this phrase

16. Part of speech of this word

17. Total number of syllables in word

18. Lexical stress of syllable

19. Main vowel in syllable

20. Left sonorant in syllable

21. Right sonorant in syllable

22. Phone preceding left sonorant

23. Phone following right sonorant

All the features are usually derived by the front-end module to
mimic the standard run-time scenario when the input available to the
synthesizer is just the text. The only exception was the phrase bound-
ary location, where we combined the front-end text analysis with pause
detection to better capture beginning-of-phrase and end-of-phrase pitch
patterns. The prediction of feature 11, a phrase-level degree of promi-
nence, was based on properties of the text alone as well, and also ex-
ploited word-level emphasis information from the component of the
Blizzard dataset consisting of sentences carrying emphasized words.
Although this was not enabled at the run time, it is still beneficial when
building the prosody trees to enable possible clustering of the syllables
with similar emphasis level. To allow for this, the output of the front-
end module was post-processed for all sentences from the Emphasis
subset of the corpus, and the prominence value predicted by the front-
end was overwritten and set to the maximum emphasis value allowed.
This was done only for the words indicated as emphasized in the script
(i.e., in all upper case).

Versions of the Full Voice: One notable characteristic of the En-
glish dataset is the wide prosodic variability, particularly in pitch range,
observed for the set of sentences in the Carroll subset. The speaker
produced these in a style that is markedly different from the rest of the
corpus, something which allows for potential richness of expressivity
but may at the same time pose a challenge in a concatenative system
that needs to smooth out stylistic and prosodic jumps to achieve a de-
sirable level of naturalness. Since it was not clear at this stage of the
process whether such a corpus would enhance the quality of the synthe-
sis, different pitch trees were built for the “full voice” condition : using
the entire corpus and leaving out the subset of Carroll sentences. This
tradeoff was investigated in a pre-evaluation step prior to synthesizing
the final submissions and will be described in more detail in Section 3.

2.1.2. Mandarin

The voice-building process for Mandarin followed a very similar outline
to the one described for English, and, therefore, we will focus only on
those components that are different. As for English, the voice-building
was done on upsampled 22kHz speech waveforms and the final evalua-
tion entries downsampled to 16kHz prior to submission.

Of the information provided in the Festival utterance files for the
Mandarin dataset, only the script item was used to automatically align
the acoustic waveforms. One challenge for Mandarin is to produce
grapheme-to-phoneme conversion to pick out one correct pronuncia-
tion from several candidates according to contextual information. This
was carried out using a Transformation Based Learning (TBL) algo-
rithm proposed in [4], which seeks to improve the performance of poly-
phones that originally have low accuracy. As for English, the initial
alignment information is obtained at a third-of-phone-sized unit. How-
ever, because the IBM Mandarin TTS system uses syllable as its basic
unit, we reshaped the sub-phonetic alignment into syllable-level align-
ments by means of phone-to-syllable conversion rules. Since we found
some incorrect Pinyin in the released dataset, we manually inspected
the alignments at this stage and made any necessary corrections before
proceeding with the rest of the build.

Prosody Model Building:
To model prosodic phenomena, we assign prosodic structure to

each utterance of the training script, and based on that, build models
for predicting prosody targets and transitions. Our system takes into ac-
count three levels of prosodic structure constituents: prosodic word,
prosodic phrase, and intonational phrase. Prosodic and intonational
phrases are manually labeled during the build process whereas prosodic
words are automatically predicted by a decision-tree model [5]. We
then build a target decision tree and a transition decision tree both for
pitch and for duration. To build the pitch target model, pitch target
features are represented as a vector of four representative points in the
syllable’s log pitch contour (pk,1, pk,2, pk,3, pk,4) for the kth sylla-
ble. For the duration target model, the observation dk is the syllable’s



duration. In the case of the transition models, pitch features are repre-
sented as (pk,1 − pk−1,4, pk,2 − pk−1,3) and the duration transition
observations as (dk − dk−1)

The contextual predictor vectors for these trees is composed of
three parts:

• Tone context information: Tone of the current syllable, previous
two syllables, and next two syllables.

• Phonetic context information: Category of the preceding sylla-
bles final and the following syllables initial phones.

• Position context information: Position of the syllable within the
prosodic word, prosodic phrase, and intonation phrase.

After building the decision trees, we train Gaussian Mixture Mod-
els (GMMs) to model the probabilistic distribution of the prosodic fea-
tures for each leaf in a given tree. The GMM will be used to calculate
target cost and transition cost at synthesis time.

2.2. Run-Time Synthesis

For synthesizing the samples we used the IBM server concatenative
TTS system [2]. This system exists in two varieties, a general ver-
sion used to synthesize most languages (e.g. English, other European
languages, and Japanese) and a version containing algorithmic varia-
tions motivated by the tonal nature of Mandarin. Both systems share a
core algorithmic base, but also contain some notable differences, among
these:

• unit type: the general version uses a third-of-phone-sized unit
as its basic unit type, while the Chinese works with whole syl-
lables.

• cost function: there are some differences in the cost function
which is used for the segments selection, as explained below.

• signal processing: the Chinese version does not perform any
signal manipulation on the selected segments.

2.2.1. English

The English TTS starts with the rule based front-end processing. This
stage converts the text into its phonetic representation and also produces
additional information such as phrase boundaries, parts-of-speech and
syllable stress. Each phone is then divided into 3 sub-phonetic units,
and each unit is assigned to a leaf in the decision tree (sec. 2.1).

For each unit we predict the target pitch, duration and energy using
the decision trees and the statistical models that we created when the
voice was built. For instance, the predicted pitch values for each sub-
phoneme unit are calculated by linear interpolation of three-per-syllable
mean log-pitch values, stored in each pitch tree leaf.

We then proceed to search for the best unit sequence where the can-
didates are all the speech segments that belong to the required context
leaf. We also augment the candidate list with candidates making up the
same orthograph in the training corpus, even if they are from different
leaves in the unit clustering tree, in order to allow retrieving alternate
pronunciations to those prescribed by the front end (e.g., aI-D-@ vs
i:-D-@ for word either).

The search for the optimal unit sequence is based on a cost func-
tion. This function is composed of two parts, the first one is the target
cost which measures the deviation of the unit’s pitch, duration and en-
ergy from the targets. The second part is the transition cost that mea-
sures how well two segments concatenate to each other. This includes
a pitch transition cost that measures the difference between the pitch
of the segments at their edges, and a spectral distance which is calcu-
lated on two short windows from each segment just before and after the
edge. In addition, a penalty can be added when concatenating any two
segments that were not contiguous in the original recording.

After the optimal unit sequence has been selected, we recompute
the final prosody in order to minimize signal modification (such as pitch
or duration modifications). The new pitch curve is a smoothed curve of
the original pitch from the concatenated units. The durations of the
units are left unchanged. For long contiguous speech segments we just
smooth the pitch curve around the concatenation points while the mid-
dle waveforms are left unchanged [2]. The pitch modifications are done
by PSOLA using the pitch marks. Before the final concatenation of
non-contiguous segments, we align them by calculation of their rela-
tive offset, which maximizes the absolute value cross-correlation at the

overlapping region. This helps us fix any pitch marks misalignment and
waveform polarity flips.

The current voice corpus had a number of peculiarities that led us
to adjust our run-time algorithms to improve the resultant TTS quality.
First, both volume and voice quality (e.g., creaky voice, aspirated voice,
shouting, etc.) fluctuations between different parts of the database were
relatively high (e.g. Carrol corpus vs. Herald corpus). Second, the
low pitch and hoarseness in this voice made it very sensitive to pitch
modifications. Third, some phonemes (e.g., liquids) appeared to be
extremely sensitive to concatenations, especially when selecting short
non-contiguous segments. A couple of adjustments have been intro-
duced to overcome those peculiarities:

• Gain adjustment: The target cost function was increased for
segments that were much louder than the target. When concate-
nating the segments each phone was normalized to its median
energy value while confining the maximal and minimal gain
modification. A smooth gain curve was applied to the whole
utterance.

• Continuity improvement: An additional phoneme-dependent
penalty was added. The penalty was applied when a sequence
of short non-contiguous segments were selected. In addition, a
phone-dependent transition cost was added to weigh continuity
more highly for classes like vowels and especially liquids (and
less so for fricatives and other consonants).

• Waveform modification minimization: The segment’s pitch
was modified only if the pitch gap at the concatenation point
was too large (>7%); otherwise, the segments were just over-
lapped and added over one pitch period each on both sides of
the boundary.

2.2.2. Mandarin

Text Processing: At run time, phone sequences are determined by
the TBL algorithm previously mentioned. Additionally, prosodic-word,
prosodic-phrase, and intonational-phrase constituency are all predicted
by decision trees [5]. The prediction process is hierarchical: the lower-
level prosodic boundaries are detected first, and then the higher level
prosodic boundaries are detected based on the lower-level prosodic
units. The prosodic structure decision tree is trained on a previously
manually labeled corpus of 20000 sentences [6].

Unit Selection: In this procedure, appropriate candidates of the
synthesis unit sequence are selected from the speech corpus. Dynamic
programming is used to search the corpus after the target cost and tran-
sition cost are defined. We generate the context feature vector based
on the Pinyin sequences and estimated prosodic structures. To obtain
target and transition costs for both pitch and duration, we traverse the
corresponding decision tree to a specific leaf according to the context
feature vector. The GMM associated with that leaf is retrieved and used
to calculate the probability of each possible candidate P ; log(1/P ) is
then used as the corresponding cost in the search function. In addition
to this prosodic cost, we also add a phonetic-context target cost to the
overall target cost function based on the preceding syllables final and
the following syllables initial phones, which we call phone similarity
cost. This cost can be computed by means of a table, also trained on
IBMs 20000 sentences corpus, containing the average spectral distance
between each phone pair. Suppose the previous phone and the next
phone of a unit St are P t

prev and P t
next and those of a candidate syl-

lable are P c
prev and P c

next respectively. Then the phone similarity cost
is given by d(P t

prev , P c
prev) + d(P t

next, P
c
next), where d(�, �) is th

distance between a phone pair stored in the similarity table.

3. Pre-Evaluation for English
Since the evaluation allowed only one system per voice category, it was
necessary to arrive at one final system configuration to produce the syn-
thesis samples submitted to the formal evaluation. In the case of the
English Voice A, in particular, this meant exploring whether the no-
table stylistic and prosodic variability that we have already discussed
enhanced the overall quality. To carry out all prior testing, we first de-
signed a development set of sentences that reflected the known domains
of synthesis for the final test sentences. We chose to focus on sam-
ples of conversations, news, and stories instead of optimizing for the
semantically-unpredictable sentences (SUS) task that was also part of



the test. We gathered some initial informal feedback from two com-
peting sets of utterances that had been synthesized with and without the
Carroll subset of sentences (i.e., all the Carroll utterances were left in (or
out of) both the database inventory and prosody models), without notic-
ing any emerging consensus: the Carroll set showed some expressivity
that was preferred by some listeners, whereas other listeners preferred
the set without. To investigate this issue more formally, we decided to
carry out an in-house evaluation test to assess whether there was any
significant preference for either set, by looking at the following ques-
tions:

• do listeners show a significant global preference for one system?

• do listeners show a significant preference for one system as a
predictable function of content?

The second of these items addresses the case where, even if there’s no
preference for one system most of the time, there may be a preference
on individual utterances. Synthesizing from such a system, however,
would entail switching in two different systems for different sentences,
which would require automatic system selection. To explore this, we
trained two different trigram language models on (i) the corpus of Car-
roll sentences only, and (ii) the corpus of news sentences that make up
a large majority of the training set, and used these language models to
evaluate the perplexity of an incoming sentence and assign a tag to it
reflecting whether or not it was more similar to the Carroll set. We then
tried to answer the second of the questions above by looking at whether
the tag produced by the language model tended to agree significantly,
for any given sentence, with the system preferred by the majority of the
users.

We designed an A-X-B preference test using 30 sentences from
each of the two systems (10 from each of the news, conversational and
novel domains), and collected responses from 8 listeners who listened
to the pairs randomized across system, and across pair sequences. The
language models were trained and validated (on 90% and 10% respec-
tively) of the Carroll and news sentences that appeared in the record-
ing script. Performance on the held-out set was around 91%. The text
of each sentence in the listening pair was then tagged by the language
model that gave it lower perplexity. The analysis of the responses from
this test did not, however, yield any significant differences. No single
voice was significantly preferred most of the time. Additionally, no sig-
nificant correlation was found, at a sentence level, between the voice
most often favored for a particular sentence and the corpus tag given to
it by the language model. The main observation here is that the addi-
tional set of Carroll sentences does not impact the quality negatively,
especially after the algorithmic developments introduced above to com-
pensate for some of the degradation we had originally observed. Based
on this, the full voice was selected to synthesize the final evaluation
sentences for the Voice A submission.

Several other smaller A-X-B preference tests where held during
the building and tuning stages. Those tests compared 10-15 sentences
from 2 or 3 different sets and were usually taken by 5-6 listeners. We
used those tests to verify that the algorithmic changes introduced to
the engine, and motivated by this challenge, were indeed improving its
quality.

4. Formal Evaluation and Results
The formal evaluation consisted of a 5-part listening test similar to the
one conducted for the Blizzard 2007 Challenge and detailed in [7]: a
speaker-similarity section to judge how the synthetic speech matches
the natural target (Section 1); a system pairwise comparison to judge
how like or unlike 2 given systems are in naturalness (Section 2); a
mean-opinion-score test from the news (Section 3) and novel (Section
4) domains; and finally a semantically-unpredictable- sentence (SUS)
task (Section 5) to judge intelligibility. The results of Section 2 were
not made available to the participants prior to the workshop. Three
benchmarks were included in the listening tests: System A, natural
speech; System B, the Festival unit-selection system built using the
same method as the CSTR entry to the Blizzard 2007 Challenge; and
System C, an HMM speaker-dependent system built using the same
method as the HTS entry to the Blizzard 2005 Challenge. The IBM
systems (anonymized as System S) are explicitly labeled in the plots
that follow.

4.1. English

For each of the Voices A and B, 620 sentences, broken down as follows,
were synthesized and submitted to the organizers: 100 conversational
sentences, 100 news sentences, 200 novel sentences, 200 SUSs and 20
emphasis sentences. The emphasis sentences were not used in this eval-
uation; subsets of sentences from the remaining categories were used
to populate the 5 parts of the test described (Section 1 used sentences
from the novel, conversational and news domains whereas each pair in
Section 2 was taken fully from either the news or the novel domain).

Figure 1: Target similarity for English Voice A (top) and Voice (B) bot-
tom

Figure 1 shows the results of the speaker similarity task for the
English voices A and B, and figure 2 shows the overall mean opinion
scores for these two voices. We can make a few remarks based on these
results: (i) the IBM English systems attain very good performance for
the two voices, (ii) the MOS performance of the system degrades very
gracefully when only a fraction of the data is used (3.7 for Voice A vs.
3.6 for Voice B; median of 4.0 in both cases), (iii) for the full voice,
there seems to be a noticeable correlation between the similarity scores
and the MOS across systems, suggesting that perhaps listeners are in-
fluenced by overall quality when judging similarity; this trend is less
noticeable for Voice B, and it is less clear why there is a drop in the
listeners’ judgment of similarity for the IBM English B voice given the
fairly steady MOS across voices already noted.

The SUS task was evaluated by asking listeners to transcribe what
they heard. The word-error-rate (WER) between the synthesis texts and
the transcriptions, subject to suitable normalizations, is plotted in figure



Figure 2: Overall MOS for English voice A (top) and voice B (bottom)

3 for the 2 English voices. Excepting the natural voice, only one system
in each of the 2 voices attains significantly lower WER.

4.2. Mandarin

For Mandarin, 697 sentences were synthesized and submitted for eval-
uation: 647 news sentences and 50 SUS sentences.

Figures 4 and 5 show the results of the speaker similarity task and
mean opinion score task respectively for the Mandarin voice. We can
see from these plots that several systems, including ours, are clustered
in terms of performance. In fact, only the natural voice receives a sig-
nificantly higher score for these two tasks.

The results of the SUS Mandarin task is shown in figure 6 in terms
of character-error-rate (CER) between the synthesis texts and the tran-
scriptions, after proper normalizations. We also find for this task a clus-
ter of top performers from which the IBM system does not perform
significantly different; only the natural voice attains a lower error score.
We also notice a similar behavior when, instead of computing character
discrepancy, the error rate is quantified with Pinyin sequences with and
without tones (not plotted).

5. Conclusions
In this paper we have presented the IBM systems submitted to the 2008
Blizzard speech synthesis challenge for UK English and Mandarin. We
have provided algorithmic descriptions of the systems behind these sub-
missions and described the evaluation tasks and performance attained

Figure 3: WER for English voice A (top) and voice B (bottom)

by the IBM samples. This year’s Blizzard installment afforded us a
chance to work with rich and challenging datasets that motivated fur-
ther algorithmic changes in our systems to address the peculiarities of
the corpora. The result were systems that rose to the challenge by being
among the top performers for both languages in the variety of evaluation
tasks considered.
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