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Abstract
This paper describes the development of the NICT/ATR speech
synthesizer for the Blizzard Challenge 2008 and discuss the
official results. The submitted system is based on the hidden
Markov model speech synthesis technology and utilizes an im-
proved excitation approach based on residual modeling, in or-
der to remove artifacts related to the parametric way in which
speech is synthesized. Although development time was limited,
the results show that the system in question achieves good per-
formance in terms of naturalness and intelligibility.
Index Terms: speech synthesis, statistical parametric speech
synthesis, Blizzard Challenge.

1. Introduction
Recent advances in corpus-based speech synthesis have been
responsible for many enhancements of known state-of-the-art
techniques such as unit concatenation-based [1] and hidden
Markov model (HMM)-based [2] approaches. In order to verify
the strengths and weakness of several voice development meth-
ods, the Blizzard Challenge has been conducted since 2005 [3].

This paper describes the NICT/ATR entry for the Blizzard
Challenge 2008. The submitted system is based on synthesis
from HMMs and utilizes the improved excitation modeling de-
scribed in [4, 5, 6] to eliminate the inherent buzziness and in-
crease naturalness of the synthesized speech. The referred sys-
tem represents the second participation of ATR in the Blizzard
Challenge as a competing system. In 2006 the XIMERA con-
catenative speech synthesizer [7] was submitted [8].

The organization of this paper is as follows: Section 2
shows the characteristics of the 2008 version of the Blizzard
Challenge; in Section 3 the NICT/ATR speech speech synthesis
technology based on HMMs is introduced; Section 4 describes
the building process for the submitted voices; and Section 5
shows and discusses the official results. The conclusions are in
Section 6.

2. The Blizzard Challenge 2008
The Blizzard Challenge is an event promoted by volunteer re-
searchers around the world in order to better understand and
compare different techniques for building corpus-based speech
synthesizers on the same data. The challenge itself consists of
building the requested voices from the released data and syn-
thesizing a prescribed set of test sentences. The sentences for
each synthesizer are then evaluated through extensive listening

tests. Volunteers, speech experts, and paid native speakers are
the usual subjects who take part in the evaluation.

For the 2008 version of the Blizzard Challenge, the follow-
ing databases were released:

• UK English: 15 hours of a male speaker released by
The Centre for Speech Technology Research (CSTR) at
the University of Edinburgh, UK, under a research-only-
purpose license;

• Mandarin Chinese: 6.5 hours of a female speaker re-
leased by The National Laboratory of Pattern Recogni-
tion, Institute of Automation, Chinese Academy of Sci-
ences, China.

By using the databases above, one, two or three of the following
voices could be built:

• Voice A: using the full UK English database (15 hours);

• Voice B: using the ARCTIC subset of the UK English
database (approximately 1 hour);

• Voice C: using the full Mandarin database (6.5 hours).

The main rules enforced in this year corresponded to the
the non-utilization of external data for database alignment1 and
system homogeneity.

3. HMM parametric speech synthesis
technology at NICT/ATR

Although ATR has a long tradition on corpus-based speech
synthesizers using the unit concatenation approach [9, 10, 7],
the entry for the Blizzard Challenge 2008 corresponded to an
HMM-based speech synthesis system.

3.1. The basic system

The basic HMM-based synthesizer of ATR is very similar to the
one described in [11] except for the parametric mixed excitation
employed. Main differences from the baseline technique (as
described in [2]) are:

• hidden semi-Markov model as the statistical ma-
chine [12];

• parameter generation considering global variance [13].

1This also concerned the use of data from Voice A to align Voice B.



v(n)VoiedExitation
G(z) = 1

Hu(z) UnvoiedExitation u(n)

w(n)

Pulse train t(n)...
p1 pZ

Hv(z)a1 aZa2

a3

p2 p3

(target signal)Residual
e(n)

White noise(error)
Figure 1: Excitation model training: filters are calculated as-
suming an analysis-by-synthesis optimization procedure.
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ũ(n)w̃(n)

H̃s
v(z)
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Figure 2: During the synthesis: excitation signal is constructed
from sequence of filter coefficients and F0.

3.2. The enhancement: better excitation modeling

In order to improve naturalness and eliminate the inherent buzzi-
ness the improved excitation model described in [4, 5] is uti-
lized. This scheme is divided into two parts: the first one in
which residual signal modeling is performed through an itera-
tive optimization of some state-dependent digital filters; and the
second part in which the excitation signal is constructed through
the calculated filters and F0. Each of these stages is outlined in
the following (see [5] for more details).

3.2.1. Training part

Training for the excitation model starts with the extraction of
residual signals and pitch marks from the speech database.
Pulse trains are constructed from the latter ones. After that,
according to a specific set of clusters of residual and pulse train
segments [6], voiced and unvoiced filters for each of these clus-
ters are calculated assuming the analysis-by-synthesis system
of Figure 1, where the input is the pulse train t(n) derived from
pitch marks, the target is the residual signal e(n), and the error
is the sequence w(n), assumed to be white noise. Therefore,
the voiced and unvoiced filters, Hv(z) and Hu(z) respectively,
are determined for each given cluster of segments by whitening
the signal w(n).

3.2.2. Synthesis part

In the synthesis part, first a filter state sequence is defined ac-
cording to context-dependent labels derived from the input text.
After that, the excitation signal is constructed by using the filter
coefficients and F0. The latter is generated from HMMs and
utilized to construct the pulse train t̃(n), as illustrated in the
diagram of Figure 2.

Although one would expect that the synthesis diagram of
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Figure 3: Pitch-synchronous triangular window j(n) and cor-
responding pulse positions pi.

Figure 2 should be exactly the one obtained from Figure 1 by
simply reversing the filter G(z), adjustments and empirical ap-
proximations are necessary to be taken into account. First,
since w(n) is not actually whitened during the training stage,
the noise component must be attenuated during the synthesis
part. This is done here by applying triangular windowing and
voicing-dependent high-pass filtering. The final unvoiced exci-
tation component is thus given by

ũ′(n) =

(
j(n) [hu(n) ∗ w̃(n)] , if F0 = 0,

hhp(n) ∗ [j(n) [hu(n) ∗ w̃(n)]] , if F0 > 0,

(1)
where j(n) is a pulse-synchronous (pitch-synchronous) trian-
gular window and Hhp(z) is a high-pass filter with cut-off fre-
quency fc =2 kHz. In fact, the way in which ũ′(n) is con-
structed is similar to the form in which the noise part of the
harmonic plus noise scheme of [14] is modeled, that is: white
noise filtered through an AR system followed by triangular win-
dowing. Figure 3 shows how the window j(n) is determined for
each pitch interval T and pulse positions pi. Here the parame-
ters T0 and T1 are considered constant with values T0 = 0.15
and T1 = 0.85, the same approximation employed in [14]. The
voiced component gain β is calculated from ũ′(n) so as the ex-
citation signal ẽ(n) has power one for every 5-ms frame, i.e.,

β =

vuut1− 1

N

NX
n=1

ũ′2(n). (2)

In this case ṽ(n) is assumed to have power one in each frame,
which is a good approximation since t̃(n) has power one at
pitch interval and H̃s

v(z) is normalized in energy. The factor
N is the number of samples in each frame.

4. Voice building for the Blizzard Challenge
Voice building process for the Blizzard Challenge 2008 can be
divided into four steps: (1) database segmentation; (2) feature
extraction and labeling; (3) speech parameter extraction; (4)
synthesizer and excitation model training. In the next sections
each of these parts is covered with details.

4.1. Database segmentation

Database segmentation was performed differently for English
and Chinese. To fulfill one of the rules enforced by the Blizzard
Challenge this year, no external data was utilized to segment the
voices. Thus, Voice B was segmented using solely the ARCTIC
subset of the English database.

4.1.1. Database segmentation for voices A and B

Pause detection and database alignment for voices A and B
were conducted as follows. The entire procedure had as in-



put the Festival [15] utterances released to all interested par-
ticipants. Firstly, phonetic labels and word transcriptions were
derived from these files. By using the phonetic labels tied-state
triphone HMMs were trained. After that, pause detection was
performed by decoding the entire database using a constrained
word recognition network, in which pause models could be
present between any adjacent pair of words, and a word pro-
nunciation dictionary derived from the provided Unilex lexi-
con [16]. The word recognition network was derived from the
word transcriptions. Once pauses were placed at the appropriate
places, HMMs were trained again using the newly constructed
phonetic labels. These final acoustic models were utilized to
segment the database through forced Viterbi alignment, using
the word pronunciation dictionary and new word transcriptions,
with pauses located at the appropriate places. Table 1 shows
the characteristics of the acoustic models of the aligners used to
segment voices A and B.

Table 1: Characteristics of the aligners for voices A and B.

Acoustic models Tied-state triphones
HMM topology Left-to-right no-skip 5 states
Acoustic features 12-th order MFCC with c0 plus

∆ and ∆∆
Output distribution 5-mixture Gaussian

4.1.2. Database segmentation for Voice C

For Voice C, segmentation and pause detection were performed
at once through Viterbi alignment. First, phonetic labels were
derived from the released sentence prompts through the Chi-
nese XIMERA text processing front-end [7]. The labels were
then used to train monophone HMMs with different number of
states, all of them left-to-right topology except for a tee-model
utilized as pauses between words. The trained HMMs were
eventually utilized to force-align the entire database, consider-
ing that pauses existed between any sequence of two words.
Eventually, pauses which had duration shorter than a pre-
determined threshold were eliminated. Table 2 shows the char-
acteristics of the acoustic models of the aligner for Voice C.

Table 2: Characteristics of the aligner for Voice C.

Acoustic models Monophones
HMM topology Left-to-right no-skip with different

number of states and one tee-model
Acoustic features 12-th order MFCC with energy plus

∆ and ∆∆
Output distribution Single Gaussian

4.2. Feature extraction and labeling

4.2.1. Voices A and B

Contextual features for voices A and B were derived from the
provided Festival utterances. However, before feature extrac-
tion, the referred files were modified in order to insert pause
models at appropriate places, according to the phonetic labels
derived by the pause detection procedure described in Sec-
tion 4.1.1. The modification did not affect the utterances in
terms of features or phonetic content. This procedure resulted
in better full context labels.

In addition to all the features listed in [17], the following
ones included in the released utterances were also employed:
emph and b-tone.

4.2.2. Voice C

Contextual factors for Voice C were extracted through the Chi-
nese XIMERA text processing part [7]. In fact, the only non-
speech released information which was actually utilized for
building Voice C corresponded to the sentence prompts.

4.3. Speech parameter extraction

The speech parameters extracted to train the synthesizers and
excitation models corresponded to: (1) spectral parameters; (2)
F0; (3) pitch marks; (4) residual sequences.

4.3.1. Spectral parameters and F0

Spectral parameters and F0 were calculated from speech at ev-
ery 5 ms. Spectral parameters corresponded to mel-cepstral co-
efficients that can directly synthesize speech through the utiliza-
tion of the mel log approximation (MLSA) filter [18]. Based on
analysis-synthesis experiments, where properties related to the
residual extraction for the excitation model [4] were also taken
into account, the number of mel-cepstral coefficients in each 5-
ms frame for Voice C was 19 whereas for voices A and B was
25. Mel-cepstral analysis was performed through 25-ms Ham-
ming windows with 20-ms overlaps. F0 was extracted by using
the Snack Sound Toolkit [19].

After training the synthesizers, mel-cepstral analysis using
a smoothed periodogram, as described in [11], was performed
and the models of the synthesizer mapped onto the obtained co-
efficients to create new HMMs. The reason for this is that mel-
cepstral coefficients derived from smoothed periodogram seem
to produce better synthesized speech through the application of
the global variance-based parameter generation approach [13].
However, one might wonder why this sort of coefficients were
not utilized in the first place to train the synthesizer. The expla-
nation is that these coefficients do not present good properties
in terms of residual extraction by inverse filtering. Thus, it was
a matter of consistency. The spectral parameters used to train
the synthesizers should be the ones utilized to extract residual
signals and define filter states for the excitation models.

4.3.2. Pitch marks and residual signals

Pitch marks and residual sequences were necessary for training
the excitation models. The former ones were obtained by the
Snack Sound Toolkit [19] while residual signals were derived
from the original speech waveforms through inverse filtering
using the MLSA structure.

4.4. Synthesizer and excitation model training

Training of the synthesizer and corresponding excitation model
for Voice A took approximately 3 weeks on a DualCoreXeon
2.33GHz 32GB machine. For the other voices computational
time was considerably smaller.

States for the excitation models were defined according to
the phonetic decision tree approach [6]. In this method, states
are derived from the corresponding synthesizers by perform-
ing context clustering on the distributions of mel-cepstral coef-
ficients using solely phonetic questions and large stopping cri-
terion. Thus, in this way, gross phonetic information are con-
veyed by the filter states. Although the bottom-up clustering
procedure described in [6] presents better performance this ap-
proach was utilized because development time was crucial. In
total, 232, 130 and 257 filter states were produced for voices A,
B and C, respectively.



Figure 4: Similarity to the original speaker for Voice A consid-
ering all the listeners.

5. Results of the official listening tests
The experimental tests conducted during the Blizzard Chal-
lenge 2008 evaluated the submitted systems according to three
different criteria:

1. similarity to the original speaker, on a scale from 1 -
“Sounds like a totally different person” to 5 - “Sounds
exactly the same person”;

2. naturalness, on a scale from 1 - “Completely unnatural”
to 5 - “Completely natural”;

3. word error rate (WER).

Because the scales utilized to evaluate criteria 1 and 2 are or-
dinal, similarity and naturalness scores are expressed in terms
of medians, and comparison among the systems is conducted
through inspection of box-plots. On the other hand, the inter-
nal scale utilized to evaluate criterion 3 allows comparison of
means [20].

In all the box-plots of this section the NICT/ATR system
corresponds to letter “T” and original speech to letter “A”.

5.1. Voices A and B

5.1.1. Similarity to the original speaker

Figures 4 and 5 show box-plots of similarity scores for voices
A and B, respectively, considering all the speakers. It can be
noticed that the submitted system obtains better performance
for Voice B. One possible explanation for these results is that
for small databases unit concatenation systems tend to synthe-
size speech with more artifacts. Consequently, in this case,
HMM synthesizers such as the ATR submission tend to stand
out among the other systems, giving the impression that they
produce speech which sounds closer to the original speaker.

Table 3 shows similarity scores according to each group of
listeners. The results show that the only difference occurs for
the Speech Experts group, in which Voice B was considered
better than Voice A. Therefore, it becomes more evident that
the increase in database might have resulted in improvement of
the unit concatenation-based entries, giving the sensation that
they sound more similar to the original speaker when compared

Figure 5: Similarity to the original speaker for Voice B consid-
ering all the listeners.

with the submitted system. This effect was thus more easily
noticed by speech synthesis experts.

Table 3: Similarity scores for voices A and B according to each
listener group.

Voice All UK Volunteers Speech Indian
students experts students

A 2 2 3 2 2
B 3 2 3 3 2

5.1.2. Naturalness degree

Figures 7 and 6 show the naturalness scores considering all the
listeners for voice A and B, respectively. In this case the results
for Voice A are apparently better compared to the ones obtained
in the similarity to original speaker case. This emphasizes per-
haps a weak point of the submitted system: it produces good
synthesized speech that does not sound very close to the origi-
nal waveforms.

Table 4 shows naturalness scores for voices A and B ac-
cording to each listener group. The results are exactly the same.

Table 4: Naturalness scores for voices A and B according to
each listener group.

Voice All UK Volunteers Speech Indian
students experts students

A 3 2 3 3 3
B 3 2 3 3 3

5.1.3. Word error rate

Figure 8 shows the WER for voices A and B considering UK
students (actual natives speakers of voices A and B) paid to par-
ticipate in test. The ATR entry achieves great performance for
this criterion. One interesting aspect is that Voice A achieves
an intelligibility degree which is higher than that for natural
speech (entry “A”). Considering all the listeners together, WER
for voices A and B were 14% and 29%, respectively, for the
submitted system and 14% for natural speech.



Figure 6: Naturalness scores for Voice B considering all the
listeners.

5.2. Voice C

In a general the results achieved by the Mandarin entry were
better than the ones obtained by voices A and B. Voice C got
very good numbers concerning naturalness and WER.

Figures 9 and 10 show respectively box-plots of similarity
to the original speaker and naturalness for Voice C considering
all the speakers. Naturalness score was 4.0 whereas 3.0 was
obtained in the similarity criterion. Therefore, for the Mandarin
voice one can again notice for the submitted system that in spite
of producing close-to-natural speech the synthesized waveform
does not sound very similar to the original speaker.

Table 5 shows similarity and naturalness scores for Voice C
according to each listener group. The ATR system achieves
great results in terms of naturalness degree among paid native
speakers of Chinese. Like in the Voice A case, speech experts
gave a 2.0 score for similarity.

Table 5: Similarity and naturalness scores for Voice C accord-
ing to each listener group.

Crit. All Natives Natives Volunteers Speech
in China in UK experts

Sim. 3 3 3 3 2
Nat. 4 4 4 3 3

Table 6 shows the character error rate (CER), Pinyin (with-
out tone) error rate (PER), and Pinyin (with tone) error rate
(PTER) for Voice C according to each listener group. The re-
sults were considered very good.

Table 6: CER, PER and PTER for Voice C (%). Results for
natural speech are in parentheses.

Group CER PER PTER
All 17.0 (13) 9.5 (5.8) 11.7 (8)
Natives in China 22 (18) 11.9 (7.7) 15 (12)
Natives in UK 16.3 (6.8) 9.1 (3.8) 10.1 (4.2)
Volunteers 8.1 (4.1) 1.8 (1.4) 3.2 (2.3)
Speech experts 11.1 (8.9) 6.9 (4.6) 7.8 (5.2)

Figure 7: Naturalness scores for Voice A considering all the
listeners.

Figure 8: WER according to paid UK listeners for voices A (top)
and B (bottom). Entry “A” corresponds to original speech.

5.3. Discussion

Despite the fact that the submitted voices obtained good per-
formance in terms of naturalness and intelligibility, a more
adequate spectral parameterization could have resulted in bet-
ter scores for the criterion similarity to the original speaker.
The current spectral parameters were chosen in order to keep
consistency between the synthesizers and corresponding exci-
tation models. Although high-order mel-cepstral coefficients
extracted as shown in [11] represent better choice for HMM
synthesizers since they enable a better reproduction of high fre-
quency components, they do not present good characteristics
in terms of residual extraction. Owing to this problem the ap-
proach described in 4.3.1 was employed. Eventually, it was
verified that if the spectral parameters used to train the syn-
thesizers were higher-order mel-cepstral coefficients extracted
as described in [11], and the ones employed to extract resid-
ual signals were lower-order mel-cepstral coefficients obtained
as [18], synthesized speech would sound more clean despite
the inconsistency. However, since time was limited the voices
whose training had already started had to be submitted.



Figure 9: Similarity to the original speaker for Voice C consid-
ering all the listeners.

As positive aspects from the participation we could mention
the development of the approach utilized for database segmen-
tation, the hacking which enabled the inclusion of pause models
in the Festival utterances, and the simple mistakes which should
not be done when voices are requested to be built in a limited
period of time.

6. Conclusions
This paper described the NICT/ATR entry for the Blizzard
Challenge 2008. The system is based on the statistical para-
metric speech synthesis technology and presents as enhance-
ment the utilization of an excitation model based on analysis-
by-synthesis training using residual as target signals. In general,
good results in terms of naturalness and intelligibility degrees
were obtained.
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