
Blizzard Entry:
Integrated Voice Building and Synthesis for Unit-Selection TTS

Christian Weiss, Sergio Paulo, Luis Figueira, Luis C. Oliveira

Spoken Language Systems Laboratory
INESC-ID, Lisbon, Portugal

(christian.weiss, spaulo, luisf, lco)@inesc-id.pt

Abstract

In this paper we describe our system used for the 2007 Blizzard
Challenge TTS evaluation task. Following the rules we were
building three voices from the given speech database where a
first voice was created from the full data a second voice was
build from the ARCTIC subset data and a third voice from a
self-defined subset. The self defined subset was choosen by a
text selection algorithm that selected sentences out of the full
speech data recordings. Although the Blizzard team provides
an already labeled corpus we were buling all the voices from
scratch using our own segmentation and pre-processing tools.
As result we show in this paper our segmentaion algorithm, the
text-selection algorithm for choosing an optimal subset from the
full speech data corpus and the voice building and synthesis sys-
tem itself. Since a TTS system can be divided in an offline and
online process we describe the offline pre-processing, the mod-
ules we use to prepare the data and describe the online synthesis
runtime process how the acoustic soundfiles are generated.

1. Introduction
Following the rules of the Blizzard Challenge the teams were
obliged to build three TTS voices from a common speech
database and synthesize a specific number of previously un-
known text. The provided common speech data exists of about
8 hours recorded speech from different domains. For each of
the three voices which should be used for runtime synthesis, a
different amount and set of data had to be used. First building a
voice and synthesizing text from the full set of recordings, sec-
ond a voice and synthesis from only the ARCTIC subset and
third a voice which had to be built from an subset of the full
database where the size is comparable to the ARCTIC subset
size but the text should be selected with a self-deployed text se-
lection algorithm. The previously unknown given text had to
be synthesized with the 3 voices. The resulting soundfiles were
then evaluated.

Voice building is a non-trivial task and as we know from the
widely used Festival[1] software, knowledge of speech process-
ing algorithms and expert knowledge as well as well prepared
data is an essential prerequisite to setup a successful TTS sys-
tem that is capable to synthesize text. As all of these prerequi-
sites are an expensive resource the intention of the provided in-
tegrated voice building framework was to provide an integrated
voice building software that can be used by non-speech experts
with less well prepared data to build a TTS voice and synthe-
size text in an fast and uncomplicated way. The software is
designed to automatize as many steps as possible but gives the
freedom to more experienced users to manually interfer to ma-
nipulate the process. The software is released as a prototype

Figure 1: Schematic overview voice-building modules

version, free for non-commercial use and can be downloaded at
http://www.javiss.org.

In the next sections we describe the software for building
the 3 voices and show how we used this software for the Bliz-
zard 2007 challenge TTS evaluation. This paper is organized
as follows: section 2 gives an overview of the integrated voice
building software. Section 3 gives an overview on the segmen-
tation of the audio files used to generate our label format. Sec-
tion 4 describes the text selection algorithm used to build Voice
C where Voice C represents a subset of the full speech data cor-
pus. Section 5 describes the log-linear training algorithm used
to train models for the NLP-pipeline as well as for the prosodic
features duration and F0. Section 6 gives an overview on the
runtime system and section 7 gives a conclusion as well as still
to solve problems of the system.

2. Integrated Voice-Building
The system follows the common setup for TTS systems where
a audio-file segmentation and labeling is followed by a text-
preprocessing module, a prosodic feature prediction module
and an acoustic synthesis module. The modules are plugged
together interdependently to serve as an integrated voice build-
ing software which is capable to generate speech signals from
given input text. The interchange between the modules uses
an XML-based format. Figure 1 shows an schematic overview
of the voice building modules. As we can see in the Figure
1 segmentation is a seperate part of the voice building itself
since the input for the software are the audio-files, the accord-
ing text-files and the according label-files produced by the seg-
mantation module. As we are using our own label format as

The Blizzard Challenge 2007 -- Bonn, Germany, August 25, 2007 1



well as we wanted to build the Blizzard voices from scratch
we decided to use our own segmentation. Section 3 describes
the segmentation and labeling of the given audio-files in de-
tail. After gathering all the audio, label and text files together
the voice building process can start. The software takes the
input files and does a text pre-processing where special- and
non-text characters are resolved. This is often referred as text-
normalisation, but in our case a lexicon lookup of abbreviations
and special characters is used and is therefore extensible. Sec-
ond a grapheme-phoneme conversion transcribes the given in-
put text into the phonetic symbol representation, and third a
context feature module gathers all context related features. We
define context features as everything that is related to the quan-
titative, linguistic-phonological, and prosodic context of a sege-
ment and its surrounding segments. The context dimension is
freely chooseable but in our case we used only the left-right
context of the current segment. Using this information we build
a segment feature-description database including all the infor-
mation plus the sentence id and the start and end time of the seg-
ments as well as the spectral representation of the first and last
frame of the segment. One can say we build a context-structure
and deploy a context-structure matching, segment selection al-
gorithm. Please see section 6 for a detailed description of the
segment selection for acoustic waveform generation. The next
section gives an overview of the phonetic segmentation.

3. Phonetic Segmentation
Blizzard databases were segmented using speaker-adapted
context-independent Hidden Markov Models (HMM). Distinct
models were trained for each database. The final database seg-
mentation was performed by a WFST-based segmenter, allow-
ing multiple phonetic sequences [2], using the database-specific
acoustic models.

3.1. Speaker-adaptation of Acoustic Models

The speaker-adaptation procedure makes use of various tools
from the Hidden Markov Toolkit (HTK) [3]. Those are HCopy,
HInit, HRest and HVite. The HMMs have the usual left-right
topology, with 8 mixtures per state. Each 16 kHz, 16 bit/sample
waveform was parameterized into vectors of 39 coefficients (12
MFCC, energy, and its deltas and delta-deltas), extracted every
5 ms, using20 ms wide Hamming windows (HCopy).

In the absence of acoustic models for theradio phone set,
which is the phone set used by American English voices in the
Festival Speech Synthesis System [1], the databases were ini-
tially aligned by a DTW-based aligner using multiple acoustic
features [4]. The phonetic sequences together with the refer-
ence synthetic signals used by the alignment procedure were
generated by means of the Festival’skal diphonevoice, which
is an American English voice based on diphone concatenation.
Then, the HMMs were initialized (HInit) and re-estimated by
applying the Baum-Welch algorithm (HRest). After model re-
estimation a forced Viterbi alignment was performed (HVite)
in order to generate training data for the next training iteration.
The train+alignment cycle was repeated three times for each
individual database, as described in Fig. 2(a).

3.2. Corpora Segmentation

The final step of the prompt segmentation procedure is depicted
in Fig. 2(b). A WFST-based segmentation tool is provided
with the speaker-adapted models, the feature vectors for each
recorded prompt and two different phonetic sequences:

(a) Speaker adaptation proce-
dure.

(b) Final database seg-
mentation.

Figure 2: Model training and prompt segmentation schematics.

• Lexicon-based phonetic sequence, obtained by concate-
nating the pronunciations produced by the Grapheme-to-
Phone tools while words are taken as isolated;

• Canonical phonetic sequence, obtained after applying
a set of post-lexical phonological rules to the Lexicon-
based phonetic sequence;

The results of the phonetic segmentation were then propa-
gated to all other linguistic levels of the utterance description by
using theMuLAS-based[5] synchronization method.

4. Sentence Selection
Definition: Let a unit occurring within a specific context be
known as a token.

Selecting a particular sentence subset capable of covering
all the distinct tokens existing in a large sentence collection is
an NP-completeproblem, [6]. Although the optimal sentence
set cannot usually be computed,1 approximate solutions to the
problem2 can be obtained by means ofgreedyapproaches, [7].

Several methods have been proposed for the solution of the
sentence selection problem, [8, 9, 10]. A large majority of them
builds on agreedyalgorithm.

4.1. Sentence Selection Method

We also developed a greedy-based sentence selection approach.
Our method consists in a multi-level token search. Our aim is
to simultaneously cover diphones, triphones and syllables, as
we force our primary target level (diphone level) to be covered
faster.

4.1.1. Level-specific contextual features

We used the contextual features described in Table 1 to define a
set of tokens to be covered at each level. Since we still do not
have accurate text analysis tools for English, we decided to use
the linguistic data available at the Festival utterance descriptions
provided together with the recordings.

1Given the computational complexity of this sort of problems.
2Much less expensive in terms of computational effort.

The Blizzard Challenge 2007 -- Bonn, Germany, August 25, 2007 2



Level Feature Definition
Diphone syl boundary Binary feature accounting for the presence of a syllable boundary between the comprising phones

(0 or 1).
Diphone word boundary Binary feature accounting for the presence of a word boundary between the comprising phones (0

or 1).
Diphone syl stress1 Binary feature that is set (value = 1) when the first phone is a stressed vowel, and unset (value = 0)

otherwise.
Diphone syl stress2 Binary feature that is set (value = 1) when the last phone is a stressed vowel, and unset (value = 0)

otherwise.

Syllable accented Binary feature that is set (value = 1) when one or more intonation events are associated to the
syllable, and unset otherwise (value = 0).

Syllable syl break Level of disjuncture between the current syllable and the following one, if any, (0, 1, 2, 3 or 4).
Syllable ToBI accent ToBI accent related to the syllable (!H*, H*, L+H* or NONE).
Syllable ToBI endtone ToBI end tone related to the syllable (L-L%, L-H%, H-H% or NONE).

Triphone syl stress1 Binary feature that is set (value = 1) when the first phone is a stressed vowel, and unset (value = 0)
otherwise.

Triphone syl stress2 Binary feature that is set (value = 1) when the intermediate phone is a stressed vowel, and unset
(value = 0) otherwise.

Triphone syl stress3 Binary feature that is set (value = 1) when the last phone is a stressed vowel, and unset (value = 0)
otherwise.

Table 1: Definition of level-specific features used to define the to-be-covered tokens in each level.

10
0

60
80

10
0

80
60

40
20

0

1 10 100 1000 10000

C
um

m
ul

at
iv

e 
T

ok
en

 F
re

qu
en

cy
 (

%
)

Number of Distinct Tokens

Number of Distinct Tokens (log−scale)

C
um

m
ul

at
iv

e 
T

ok
en

 F
re

qu
en

cy
 (

%
)

0 5000 10000 15000 20000 25000

0
20

40

Diphone Level Tokens

Diphone Level Tokens

Syllable Level Tokens

Triphone Level Tokens

Triphone Level Tokens

Syllable Level Tokens

Figure 3: Accumulated frequencies of the level-specific tokens
within theBlizzardcorpora.

4.1.2. Data

Accumulated frequencies of diphone-, syllable- and triphone-
level tokens are depicted in Fig. 3 (the tokens were sorted by
their relative frequency). Those graphics together with Table 2
show that the token’s relative frequencies follow an uneven dis-
tribution. For instance, more than 50% of the syllable-level to-
kens occur only once in the corpora.

4.1.3. Algorithm

We use thegreedyalgorithm to iteratively select the sentence
with the highest score. Sentences are scored according to (1),
wherej is a sentence to be scored,i accounts for the token level,
diphone, syllable or triphone, andci is the level-dependent mul-
tiplying factor (LMF).

Score(j) =

3∑
i=1

ci · Si,j (1)

Given a sentence, sayj, and a level, sayi, an Si,j value
is computed for every i-level token of sentencej according to

Level #Tokens #Token Occurrence
Overall Distinct Avg Med Max Min

Diphone 312,188 3,700 84 16 4549 1
Syllable 118,815 16,737 7 1 3614 1
Triphone 310,045 26,268 12 3 1976 1

Table 2: Statistics on level-specific token distribution within the
Blizzardcorpora, where Avg, Med, Max and Min stand for av-
erage, median, maximum and minimum values, respectively.

equation (2).

Si,j(T ) =

{
2

1+ϕi(T )
if T is not covered yet;

0 otherwise;
(2)

Due to the uneven nature of the token frequency distribu-
tion, we do not equally score all theto-be-coveredtokens, as
suggested in [10]. Therefore,ϕi(T ) is the ratio between the
frequency that a tokenT of level i occurs within the corpora
and that frequency value averaged over all tokens of that level.
The ϕi(T ) value depends on that ratio, rather than on the ab-
solute occurring frequency, in an attempt to balance the relative
impact of the scores produced at the different levels on the over-
all sentence score.

4.1.4. Experiments

We used three distinct sets of LMFs in order to evaluate its im-
pact on the token coverage at the multiple levels. Since the
sentence subset allowed to be used in this application (voice C)
is very size-limited, we decided to ensure a good diphone-level
token coverage at the expense of all other levels. Therefore, the
LMFs ci of (1) take values of 10, 1 and 1, for diphones, sylla-
bles, and triphones, respectively. The results of this experiment

The Blizzard Challenge 2007 -- Bonn, Germany, August 25, 2007 3



5000

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

D
ip

ho
ne

 C
ov

er
ag

e 
(%

)

Iteration NumberIteration Number

S
yl

la
bl

e 
C

ov
er

ag
e 

(%
)

0
20

40
60

80
10

0

Iteration Number

40003000200010000 0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0
T

rip
ho

ne
 C

ov
er

ag
e 

(%
)

Diphone Level

Multiplying Factors={10,1,1}

Multiplying Factors={1,10,1}

Multiplying Factors={1,1,1}

Multiplying Factors={10,1,1}

Multiplying Factors={1,10,1}

Multiplying Factors={1,1,1}

Multiplying Factors={10,1,1}

Multiplying Factors={1,10,1}

Multiplying Factors={1,1,1}

Triphone LevelSyllable Level

Figure 4: Token coverage for three distinct sets of multiplying
factors,{c1, c2, c3} = {cdiphone, csyllable, ctriphone}.

(solid line) and another two experiments, for which we used
LMFs of {1, 1, 1} (dashed line) and{1, 10, 1} (dotted line), are
depicted in Fig. 4. Black squares in that figure are used to mark
the token coverage of the sentence subset that gave rise to the
unit inventory ofvoice C. The coverage values are 90%, 30%
and 48% for diphones, syllables and triphones, respectively.

5. Conditional Log-linear Models
For Grapheme-Phoneme conversion, Part-of-Speech Tagging,
syllable boundary detection, as well as for duration and F0
prediction we applied conditional log-linear models also known
as Maximum-Entropy models [11]. The conditional log-linear
model framework is a well known approach for ambiguities
resolution in natural language processing [12] where many
problems can be reformulated as a classification problem. The
task of such a reformulation is to include a context and to
predict a correct class. The objective is to estimate a function,
X → Y which predicts an objectx ∈ X to its classy ∈ Y .
Y represents the predefined classes for either each task of
our prediction problem. In the field of stress prediction we
are dealing with a binary classification where the class is true
for stressed syllables and false for non-stressed. The same
binary classification task has to be solved in the domain of
syllabification where we have a syllable boundary or not.X
consists of quantitative and phonological features where we
include the context and the resulting input for the classification.
The classifier can be seen as a conditional probability model
in the sense ofC(x) = argmaxyp(y|x) where x is the
object to be classified andy is the class. Including the context
we get a more complex classifierC(x1, x2, x3, ..., xn) =
argmaxy1,...,yn

∏
i=1 p(y1|x1, ..., xn, y1, ..., yi−1) where

x1, ..., xn, y1, ..., yi−1 is the context at theith decision andyt

is the outcome.
We use this model in all our dynamic feature prediction

tasks during the offline voice building process as well as during
synthesis runtime. The features used for training and building

Unit Feature

word preceeding, succeeding
sentence type

distance left/right in sentence
part-of-speech

duration, log. duration
avg. F0, log. F0

first/last frame MFCC
syllable preceeding, succeeding syllable

distance left/right in sentence/word
stress

duration, log. duration
avg. F0, log. F0

first/last frame MFCC
phone distance left/right word, syllable

duration, log. duration
avg. F, log. F00

first/last frame MFCC

Table 3: Features used for log-linear model training

Figure 5: Schematic overview of the runtime synthesis system

the context-structure are listed in Table 3.

6. Runtime System

The runtime synthesis system processes the given input text and
text-normalizes the input where a lexicon based lookup for ab-
briviations, and special characters is used. The input text is
converted into a phonetic represenation by the log-linear model.
This model was trained using the public available CMU 0.6 dic-
tionary. Once the input text is phonetically transcribed a context
feature prediction as well as feature calculation is performed
where quantitative features as well as sentence type can be ex-
tracted from the text and part-of-speech, stress, duration and F0
is predicted using the previous trained models. In the case of du-
ration and F0 the models are trained using only values occuring
in the existing speech database. One can say this approaoch is a
speaker dependent duration and F0 model. Once all the context
features are gathered a context-structure vector represents each
of the identified speech segments. As we are using a top-down
unit-selection algorithm the occuring speech segments could be:
words, syllables and phonemes. Using this context structure the
acoustic module performs the selection and speech signal gen-
eration. Figure 5 gives an overview of the speech generation
runtime system.

The Blizzard Challenge 2007 -- Bonn, Germany, August 25, 2007 4



6.1. Acoustic Module

The acoustic synthesis module follows the variable-size unit se-
lection algorithm. We apply a pre-selection strategy while the
algorithm tries to find a segment that matches the predefined
target context-structure in a left-right context. If this does not
result in any found segment we simplify the structure matching
but keep the left-right context. When no segment is found on
the word-level, the algorithms searches for syllable segments
and in a last alternative a phoneme-level segment selection is
performed. Using a predefined structure matching for segment
selection we save computational resources in target and join-
cost distance calculation while the search space is reduced. No
exact measures are done here. The segment distance calculation
is done by minimizing the distance of the selected segment and
the target segment. Here a kind of normalization is deployed
since the values are real integer values and e.g. the distance in
the log-duration is not relative to the quantitative feature dis-
tance. This normalization is done byx = x2

1+x2 . The join cost
calculation is done by a Euclidian distance measure between the
successive frames MFCCs of the segments.

7. Conclusion
The Blizzard evaluation gave us an first impression of the sys-
tem and some critical problems are still to improve and some
had been improved in the meantime. This is an ongoing process.
The Blizzard Challenge showed that the selection algorithm had
a bug where some units where not choosen appropriatetly. This
led in the evaluation of the intelligibility to a less good result.
Using no signal manipulation after the speech signal genera-
tion process doesn’t result in a natural prosody. Here a post-
processing with a common prosody model could lead to a bet-
ter prosody performance. In terms of speed we could improve
the selection process by using our context-structure matching to
our previous search approach, but an comparison with existing
systems has to be done and exact measures should show the per-
formance. All in all the software is useable to build a voice in
a very short time with less speech expert knowledge and could
be an alternative to existing software used in research and uni-
versities.

8. References
[1] A. W. Black, P. Taylor, and R. Caley,The Festival Speech

Synthesis -System documentation, 2002.

[2] S. Paulo and L. C. Oliveira, “Generation of word alterna-
tive pronunciations using weighted finite state transduc-
ers,” in Interspeech 2005, 2005.

[3] S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore,
J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Wood-
land,The HTK Book (for HTK Version 3.2.1), 2002, avail-
able at http://htk.eng.cam.ac.uk/docs/docs.shtml.

[4] S. Paulo and L. C. Oliveira, “Dtw-based phonetic align-
ment using multiple acoustic features,” inInterspeech
2003, 2003.

[5] S. Paulo and L. C. Oliveira, “Mulas: A framework for
automatically building multi-tier corpora,” inInterspeech
2007, 2007.

[6] S. Arora and B. Barak, “Complexity theory: A modern
approach,” Princeton University, Tech. Rep., 2006,
Available at: http://www.cs.princeton.edu/theory/complexity.

[7] D. S. Johnson, “Approximation algorithms for combinato-
rial problems,” inFifth annual ACM symposium on Theory
of Computing, 1973.

[8] B. Bozkurt, O. Ozturk, and T. Dutoit, “Text design for
tts speech corpus building using a modified greedy selec-
tion,” in Eurospeech 2003, 2003.

[9] A. W. Black and K. A. Lenzo, “Optimal data selection
for unit selection synthesis,” in4th ESCA Workshop on
Speech Synthesis, 2001.

[10] J. P. H. van Santen and A. L. Buchsbaum, “Methods for
optimal text selection,” inEurospeech 97, 1997.

[11] A. Berger, S. A. DellaPietra, and V. J. DellaPietra, “A
maximum-entropy approach to natural language process-
ing,” Computational Linguistics, vol. 22(1), 1996.

[12] A. Ratnarparki,Maximum Entropy Models for Natural
Language Ambiguity Resolution. PhD Dissertation, Uni-
versity of Pennsylvenia, 1998.

The Blizzard Challenge 2007 -- Bonn, Germany, August 25, 2007 5


