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Abstract
This paper describes an HMM-based speech synthesis system
developed by the HTS working group for the Blizzard Chal-
lenge 2007. To further explore the potential of HMM-based
speech synthesis, we incorporate new features in our conven-
tional system which underpin a speaker-independent approach:
speaker adaptation techniques; adaptive training for HSMMs;
and full covariance modeling using the CSMAPLR transforms.

1. Introduction
A statistical parametric speech synthesis system based on hid-
den Markov models (HMMs) [1] can easily and flexibly gener-
ate natural sounding synthetic speech. We have developed high-
quality speaker-dependent speech synthesis systems and shown
their performance in the past Blizzard challenges [2, 3].

In addition to the speaker-dependent systems, we have also
been developing a speaker-independent HMM-based speech
synthesis in which statistical “average voice models” are cre-
ated from several speakers’ speech data and are adapted with a
small amount of speech data from a target speaker (e.g. [4]).
This research started by directly using several speaker adap-
tation techniques developed for automatic speech recognition
such as maximum likelihood linear regression (MLLR) [5] as
transformation techniques for spectral parameters of speech [6].
Then, in order to simultaneously model and adapt excitation
parameters of speech as well as spectral parameters, we devel-
oped the multi-space probability distribution (MSD) HMM [7]
and its MLLR adaptation algorithm [8]. We utilize logarith-
mic fundamental frequency (log F0) as the excitation parame-
ter, and the MSD-HMM enables us to treat the log F0 obser-
vation, which is a mixture observation of a one-dimensional
real number for voiced regions and a symbol string for un-
voiced regions, within a generative model. Furthermore, in
order to simultaneously model and adapt duration parameters
for the spectral and excitation parameters as well, we devel-
oped the MSD hidden semi-Markov model (MSD-HSMM) [9]
and its MLLR adaptation algorithm [4]. The HSMM [10] is an
extended HMM, having explicit state duration distributions in-
stead of the transition probabilities to directly model and control
state durations. More advanced speaker adaptation techniques
including constrained structural maximum a posteriori linear re-
gression (CSMAPLR) [11] were also defined within the frame-
work of the MSD-HSMM. In addition to the improvements of
the speaker adaptation techniques, several training techniques
for an initial model for the above speaker adaptation techniques
have also been developed. As the initial model, we utilize an
average voice model constructed from training data which con-
sists of several speakers’ speech. However, the training data
of the average voice model includes a lot of speaker-dependent

characteristics, and they crucially affect the adapted models and
the quality of synthetic speech generated from them. Therefore,
we have incorporated the speaker-adaptive training (SAT) algo-
rithm [12] into our speech synthesis system for normalizing the
negative influence of speaker differences [13, 14]. In the SAT
algorithm, the model parameters for the average voice model
are blindly estimated based on an assumption that the speaker
difference is expressed by linear transformations of the aver-
age voice model. An application to multilingual/polyglot TTS
systems is also proposed [15]. By using this framework, we
can obtain synthetic speech for a target speaker from as little as
100 utterances (about 6 minutes). Interestingly, we have shown
that synthetic speech using this approach is perceived as be-
ing more natural sounding than that of speaker-dependent (SD)
systems trained on between 30 and 60 minutes of speech data
by many listeners because of the data-rich average voice model
[4, 16, 14].

At first sight, this seems strange; we cannot obtain a perfect
speaker-depend model even from 60 minutes of speech data.
However, the average voice model trained on a much larger
amount of speech data can provide a lot of prior information
of speech data, since the speech of multiple speakers exhibits
similar pattern or tendency to some degree. Hence, when the
prior information is appropriate for the target speaker, it can re-
duce error and improve the estimator for the target speaker’s
model. Even when the prior is not useful for the target speaker,
it can provide a maximum likelihood estimator from the target
speaker’s data. In addition, there is a famous statistics para-
dox (called “Stein’s paradox” [17]) intimately linked with this
phenomenon. Stein proves that when we estimate more than 3
random variables, an empirical Bayes estimator [18] (in which
training data for these random variables is used for the esti-
mation of hyperparameters of their prior distributions) is better
than a standard maximum likelihood estimator (i.e., when we
have data from 3 people and estimate a mean value per person,
the mean value estimated by the empirical Bayes with the prior
distributions created from 3 persons’ data is better than a mean
value separately estimated by a likelihood method with a per-
son’s data only). In fact, our speaker-independent method uti-
lizes maximum a posteriori (MAP) algorithm of the empirical
Bayes method as one of speaker adaptation algorithms. There-
fore, the speaker-independent approach has the potential to sur-
pass the common speaker-dependent approach, and it would be
very interesting to investigate the aspect via several evaluations
for the Blizzard Challenge 2007.

2. Overview of the HTS 2007 System
In the Nitech-HTS2005 system [2], high-quality speech vocod-
ing methods (STRAIGHT with mixed excitation) [19], HSMMs,
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Figure 1: Overview of the HTS-2007 speech synthesis system.

and a parameter generation algorithm considering global vari-
ance (GV) [20] were integrated. The Nitech-HTS2006 system
[3] additionally adopted semi-tied covariance [21] (also known
to as maximum likelihood linear transform [22]) for full covari-
ance modeling. Our new system “HTS-2007” incorporates the
following new features into the above systems as well:

• Using a speaker-independent approach instead of the
speaker-dependent approaches

• Applying adaptation and adaptive training techniques to
HSMMs instead of the standard ML training

• Using the CSMAPLR transforms for full covariance
modeling instead of the semi-tied covariance transform

This new system consists of a speech analysis part, training part
for the average voice model, speaker adaptation part, and speech
synthesis part as shown in Fig. 1.

2.1. Speech Analysis

In this system, we use three kinds of parameters for the
STRAIGHT mel-cepstral vocoder with mixed excitation, that
is, the STRAIGHT mel-cepstrum [2], log F0, and aperiodicity
measures. This is the same as the speaker dependent system
Nitech-HTS 2005. The mel-cepstral coefficients are obtained
from STRAIGHT spectral analysis [19] in which F0-adaptive
spectral smoothing is carried out in the time-frequency region.
The F0 values are estimated using the following three-stage ex-
traction to reduce error of F0 extraction such as halving and
doubling and to suppress voiced/unvoiced error. First, using
the instantaneous frequency amplitude spectrum (IFAS) based
method [23], the system extracts F0 values for all speech data
of each speaker within a common search range. Second, the
F0 range of each speaker is roughly determined based on a
histogram of the extracted F0 values. Third, F0 values are
re-extracted in the speaker-specific range using the IFAS algo-
rithm, fixed-point analysis [24], and ESPS get-F0 [25]. Finally,
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Figure 2: Details of training procedures.

a median value of the extracted F0 values at each frame is uti-
lized as an eventual F0 value. The aperiodicity measures for
mixed excitation are based on a ratio between the lower and
upper smoothed spectral envelopes, and averaged on five fre-
quency sub-bands: 0-1, 1-2, 2-4, 4-6, and 6-8 kHz. In addition
to these static features, their dynamic and acceleration features
are used.

2.2. Training

To simultaneously model the acoustic features together with
duration in a unified modeling framework, we utilize context-
dependent multi-stream left-to-right MSD-HSMMs as acous-
tic units for speech synthesis. The multi-stream model struc-
ture is used to simultaneously model the mel-cepstral coeffi-
cients, log F0, and aperiodicity measures. 53 English phonetic,
prosodic, and linguistic features used for context-dependent la-
bels contain phonetic, segment-level, syllable-level, word-level,
phrase-level, and utterance-level features. Details of these fea-
tures are given in [26]. In addition to this phonetic and linguis-
tic information, we added the gender of speakers to the con-
text labels for conducting mixed-gender modeling. Note that
phoneme boundary labels are used only to obtain the initial
model parameters of the average voice model and we do not
require the phoneme boundary labels at the adaptation or syn-
thesis stage.

Using the above MSD-HSMMs, we train the average voice
model as the initial model of the adaptation from training data
which consists of several speakers’ speech. In this Blizzard
Challenge, we included adaptation data for the target speaker
EM001 in the training data for the average voice model, since
the amount of speech data for the target speaker exceeded that
for the average voice model. To construct an appropriate aver-
age voice model, we utilize a feature-space SAT algorithm and
a decision-tree-based context and gender clustering [14] for the
estimation and tying of the model parameters of the average
voice model, respectively. The feature-space SAT algorithm
can be viewed as a generalized version of various normaliza-
tion techniques such as cepstral mean normalization (CMN),
cepstral variance normalization (CVN), vocal tract length nor-
malization (VTLN), and bias removal of F0 and duration.

The actual training procedures for the training of the aver-
age voice model are shown in Fig. 2. In order to conduct both
normalization of the speaker-dependent characteristics and con-
servation of the gender-dependent characteristics, we first train
gender-dependent HMMs using the SAT algorithm. Then, the
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decision-tree-based context and gender clustering technique us-
ing minimum description length (MDL) criterion [27] is applied
to the HMMs, and the model parameters of the HMMs at each
leaf node of the decision trees are tied. We assume that the
CMLLR transforms for the SAT algorithm remain unchanged
during the clustering, and calculate the description length in a
similar way to [27]. Then we re-estimate the clustered HMMs
using a SAT algorithm with piecewise linear regression func-
tions. To determine regression classes for the piecewise linear
regression, the decision trees constructed for the gender-mixed
model are used, since use of the decision tree automatically re-
flects both differences of gender information and phonetic and
linguistic information, and it is expected that more appropriate
normalization for the average voice model is achieved. We then
calculate initial duration pdfs from trellises which are obtained
from the SAT algorithm, and conduct decision-tree-based con-
text and gender clustering for the duration pdfs. Using the tied
duration pdfs, we perform the SAT algorithm for the HSMMs
with piecewise linear regression functions in order to normalize
speaker characteristics included in the duration pdfs as well as
other acoustic features. At the SAT stages, we first estimated
CMLLR transforms three times, and then updated mean vec-
tors of both output and duration pdfs, their covariance matrices,
space weights for MSD, and transition probabilities five times.

2.3. Speaker Adaptation

At the speaker adaptation stage, we adapt the average voice
model to the target speaker using speaker adaptation techniques
for the multi-stream MSD-HSMM. Here we use a combination
of the CSMAPLR adaptation and the MAP adaptation tech-
niques [28]. The CSMAPLR adaptation simultaneously trans-
forms the mean vector μ and covariance matrix Σ of a Gaussian
pdf i using the same transforms as follows:

μi = ζμi + ε, (1)

Σi = ζ Σi ζ�. (2)

Then, structural maximum a posteriori (SMAP) estimation [29]
is used to robustly estimate ζ and ε. In the SMAP estimation,
tree structures of the distributions effectively cope with con-
trol of hyperparameters. Specifically, we first estimate a global
transform at the root node of the tree structure using all adap-
tation data, and then propagate the transform to its child nodes
as their hyperparameters. In the child nodes, transforms are es-
timated again using their adaptation data, based on the MAP
estimation with the propagated hyperparameters. Then, the re-
cursive MAP-based estimation of the transforms from the root
node to lower nodes is conducted (Fig. 3). For the tree struc-
tures of the distributions, we utilize the decision trees for con-
text clustering because the decision trees have phonetic and lin-
guistic contextual questions related to the suprasegmental fea-
tures by which prosodic features, especially F0, are character-
ized. Hence, the propagated prior information would automati-
cally reflect the connection and similarity of the distributions in
keeping with the linguistic information.

Another advantage of the CSMAPLR adaptation is that we
can efficiently construct covariance models. In [3], it is reported
that full covariance modeling based on semi-tied covariance
[21] has effect on the speech parameter generation algorithm
considering GV. In this system, we use the CSMAPLR trans-
form for the purpose of the full covariance modeling instead of
the semi-tied covariance.

Then we additionally adopt the MAP adaptation [28] to
modify the adapted model parameters which have a relatively
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Figure 3: CSMAPLR adaptation

large amount of speech data from the target speaker, since the
CSMAPLR adaptation algorithm has a rough assumption that
the target speaker model would be expressed by the piecewise
linear regression of the average voice model.

2.4. Speech Synthesis

At the synthesis stage, input text is transformed into a se-
quence of context-dependent phoneme labels with the gen-
der information of the target speaker. Based on the label se-
quence, a sentence MSD-HSMM is constructed by concatenat-
ing context-dependent MSD-HSMMs. After the duration pdfs
automatically determine state durations of the sentence MSD-
HSMM, the mel-cepstrum, log F0, and aperiodicity-measure
sequences are generated using the speech parameter generation
algorithm considering GV. This is a penalized maximum like-
lihood method in which the GV pdf (a Gaussian pdf for the
variance of the trajectory at utterance level) acts as a penalty for
the likelihood function. The algorithm tries to keep the global
variance of the generated trajectory as wide as that of the target
speaker, while maintaining an appropriate parameter sequence
in the sense of maximum likelihood. It is possible to adapt the
GV pdf from a speaker-independent model to that of a target
speaker using MAP adaptation. However, the number of pa-
rameters of a GV pdf is very small. Specifically, it is equal
to the dimensionality of the static features. Hence we directly
estimate the GV pdf from the adaptation data. The generation
method for speech waveforms is identical to that of Nitech-HTS
2005. An excitation signal is generated from one-pitch wave-
forms, which are synthesized with the mixed excitation, using
PSOLA, and then a synthesized waveform is generated using
the MLSA filter corresponding to the STRAIGHT mel-cepstral
coefficients.

3. Experiments
3.1. Experimental Conditions

To construct the HTS-2007 system, we used the CMU-ARCTIC
speech database, which contains a set of approximately one
thousand phonetically balanced sentences uttered by four male
speakers (AWB, BDL, JMK, RMS) and two female speak-
ers (CLB, SLT), and a speech database, which was released
from ATR for the purpose of the Blizzard Challenge 2007 and
contains the same sentences as that of CMU-ARCTIC speech
database and additional sentences uttered by a male speaker
EM001. The sizes of these speech corpora were six and eight
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Table 1: CPU time (day) for construction of each system of each
voice.

(a) Voice B (ARCTIC sentences: 1 hour)

Order of mel-cepstral analysis
System 24 39
Nitech-HTS 2005 0.5 day 0.8 days
Nitech-NAIST-HTS 2006 0.7 day 1 days
HTS-2007 8 days 15 days

(b) Voice A (6579 sentences: 8 hours)

Order of mel-cepstral analysis
System 24 39
Nitech-HTS 2005 1.5 day 2.5 days
Nitech-NAIST-HTS 2006 1.7 day 2.8 days
HTS-2007 20 days 36 days∗

∗ In progress

hours for the CMU-ARCTIC and the Blizzard Challenge 2007
corpora, respectively. To model the synthesis units, we used the
U.S. English phone set “radio” of the Festival speech synthesis
system, and took the phonetic and linguistic contexts (obtained
from utterance files included in these corpora for the Festival
speech synthesis system) into account without any modifica-
tions.

Speech signals were sampled at a rate of 16 kHz and win-
dowed by an F0-adaptive Gaussian window with a 5-ms shift.
The feature vectors consisted of 24 or 39 STRAIGHT mel-
cepstral coefficients (including the zeroth coefficient), log F0,
aperiodicity measures, and their dynamic and acceleration co-
efficients. We used five-state left-to-right context-dependent
multi-stream MSD-HSMMs without skip paths. Each state
had a single Gaussian pdf with a diagonal covariance matrix.
In the speaker adaptation and adaptive training, each CMLLR
or CSMAPLR transform was a triblock diagonal matrix corre-
sponding to the static, dynamic, and acceleration coefficients.

3.2. Details of Voice A and Voice B Systems

To investigate the effect of the corpus size, the organizers re-
quested the participants to submit three systems: the first sys-
tem was trained using all the speech data included in the re-
leased database (Voice A), the second system was trained using
only the ARCTIC subset (Voice B), and the third system was
trained using a freely selected subset having the same amount of
speech data as that of the ARCTIC subset (Voice C). Because of
the time-consuming training procedures of our system, we con-
structed the Nitech-HTS 2005, Nitech-NAIST-HTS 2006, and
HTS-2007 systems for the Voices A and B only. We undertook
to construct two kinds of systems using 24 or 39 STRAIGHT
mel-cepstral coefficients for each voice. Unfortunately, the
training for the HTS-2007 system using 39 STRAIGHT mel-
cepstral coefficients did not finish by deadline for test utterance
submission.

We utilized four grid computing clusters to construct our
systems since we can concurrently conduct almost all the train-
ing procedures of the MSD-HSMMs per state, per speaker,
and/or per subset. These grid computing clusters have from
16 to 136 cores with from 1 GB RAM to 4GB RAM. The to-
tal number of these cores is 264. Table 1 shows CPU time for
the construction of each system of each voice. Compared with
the speaker-dependent systems, the training for constructing the

Table 2: CPU time (hour) for each procedures of the HTS-2007
systems using 39 mel-cepstral coefficients

Procedures Voice B Voice A
Segmental K-means & EM 10h 19h
Embedded Training (Monophone HMM)

2h 3h
(Mean&Variance×5)

SAT (Monophone HMM)
7h 9h

(CMLLR×3, Mean&Variance×5)
SAT (Context-dependent HMM)

2h 3h
(Mean&Variance×1)

Decision-Tree-based Clustering 3h 13h
Embedded Training (Tied-state HMM)

2h 3h
(Mean&Variance×5)

SAT (Tied-state HMM)
30h 222h

3×(CMLLR×3, Mean&Variance×5)
Duration Modeling & Clustering 11h 34h
SAT (Tied-state HSMM)

230h 553h
(CMLLR×3, Mean&Variance×5)

CSMAPLR+MAP Adaptation (HSMM) 28h *
Total 325h —

* In progress

HTS-2007 was an extremely time-consuming process. The rea-
sons include that even the system for Voice B utilized a total
of 7 hours of speech data and then that for Voice A utilized a
total of 14 hours of speech data. In addition to the use of the
large multi-speaker corpora, the SAT algorithms in particular
required a lot of computation. Table 2 shows CPU time for
each procedure of the HTS-2007 systems using 39 mel-cepstral
coefficients. In these procedures, the SAT algorithm using the
decision trees was the dominant cost, since this algorithm ba-
sically requires matrix operations for each state. Although we
believe we can make these procedures much faster, we reluc-
tantly submitted the systems using 24 STRAIGHT mel-cepstral
coefficients this time because of our tight schedules. Hopefully,
we would like to report the results of both systems in the near
future.

Tables 3 and 4 show the number of leaf nodes of the con-
structed decision trees and footprints for each system of each
voice, respectively. The numbers of leaf nodes for the Nitech-
NAIST-HTS 2006 system are the same as those of the Nitech-
HTS 2005. The footprints for the HTS-2007 systems com-
pletely depend on the condition of the speaker adaptation al-
gorithms. For example, when we use a global transformation
of the CSMAPLR adaptation only, the speaker-specific part of
the footprints for the HTS-2007 system is just 40 to 55 kbytes.
Then, the other parts of the footprint are common to all the
speakers. However, in this Blizzard challenge, we focus not
on the footprint size but on the quality of synthetic speech.
Therefore, we utilized the combined algorithm of the piecewise
CSMAPLR adaptation and MAP adaptation, and thereby it in-
creased the footprint as shown in the Table 4.

4. Results of the Blizzard Challenge 2007
Figures 4 - 6 shows the evaluation results of the mean opinion
score (MOS), average word error rate (WER), and similarity to
original speaker on a 5-point scale of the Voice A and B of all
systems participated in the Blizzard Challenge 2007. This year
16 groups participated in the challenge. In these figures, system
“N” corresponds to the HTS-2007 system.
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Table 3: The number of leaf nodes of constructed decision trees
for each system of each voice.

(a) Voice B (ARCTIC sentences: 1 hour)

System Mel-cepstrum log F0 Aperiodicity Duration
2005 (24) 1,371 2,101 911 435
2005 (39) 961 2,096 850 459
2007 (24) 3,530 7,136 1,859 3,746
2007 (39) 2,508 13,034 1,735 3,557

(b) Voice A (6579 sentences: 8 hours)

System Mel-cepstrum log F0 Aperiodicity Duration
2005 (24) 6,959 11,174 4,590 5,702
2005 (39) 4,598 21,189 3,994 5,110
2007 (24) 7,273 14,245 3,740 8,580
2007 (39) 5,285 31,411 3,747 8,438

Table 4: Footprint (MBytes) for each system of each voice.

(a) Voice B (ARCTIC sentences: 1 hour)

Mel-cepstral analysis
System 24 39
Nitech-HTS 2005 1.64 1.70
Nitech-NAIST-HTS 2006 1.67 1.76
HTS-2007 (Diagonalized covariance) 4.43 5.38
HTS-2007 (Diagonal covariance +

15.06 22.75
CSMAPLR transforms)

(b) Voice A (6579 sentences: 8 hours)

Mel-cepstral analysis
System 24 39
Nitech-HTS 2005 8.12 9.29
Nitech-NAIST-HTS 2006 8.15 9.35
HTS-2007 (Diagonalized covariance) 8.91 11.73
HTS-2007 (Diagonal covariance +

39.24 49.10
CSMAPLR transforms)

Compared with the MOS results for the Nitech-NAIST-
HTS 2006 system used for the Blizzard Challenge 2006 [3], we
observe that the MOS results have become slightly worse. From
preliminary experiments, we have found that differences in the
order of the STRAIGHT mel-cepstral analysis affect MOS re-
sults. On the other hand, compared with the WER results for
all the other systems, we can see that systems which can reach
less than 30% of the WER in both the Voice A and B are J, M,
and our system only. It is worth noting that, although we do
not conduct any modifications of the released database, includ-
ing speech and label files, the HTS-2007 system can provide
good performance. However, the evaluation results of similar-
ity to the original speaker indicate that the synthetic speech of
the HTS-2007 system has relatively low similarity. We believe
we can improve the similarity of synthetic speech by using sys-
tems with 39 or more STRAIGHT mel-cepstral coefficients.

5. Online Demonstration System and New
HTS version 2.1

We plan to create new voices using this HTS-2007 system and
release them for the purpose of an online demonstration sys-
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tem.1 In addition to this, we also plan to integrate these new
features and the following methods into future HTS releases:

• SMAPLR adaptation [30],

• Parameter generation using the GV pdf with covariance
adaptation such as CMLLR [31] / CSMAPLR.

This new HTS (version 2.1, released March 2008 or later), with
the STRAIGHT analysis/synthesis technique and F0 extraction
algorithms, will provide the ability to construct the above HTS-
2007 system as well as our speaker-dependent systems devel-
oped for the past Blizzard Challenge events.

6. Conclusions
This paper described an HMM-based speech synthesis system
developed by the HTS working group for the Blizzard Chal-
lenge 2007. To further explore the potential of HMM-based
speech synthesis, we incorporated new features in our conven-
tional system which underpin a speaker-independent approach:
speaker adaptation techniques; adaptive training for HSMMs;
and full covariance modeling using the CSMAPLR transforms.
Our future work is to analysis this system and compare it with
our speaker-dependent systems in detail.
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