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Abstract 
In this paper, we present two concatenative text-to-speech 
systems built from the “Blizzard Challenge” speech databases. 
The two systems differ primarily in their segment selection cost 
function. One system has our baseline cost function, and the 
other has a cost function which has been altered to potentially 
better handle small datasets.   Results indicate that both systems 
perform similarly in terms of MOS and intelligibility. 
 

1. Introduction 
One key factor in determining the quality of the output of a 
text-to-speech system is the dataset upon which it is modeled.  
Both the voice characteristics of the database speaker and the 
sheer quantity of data play important roles in shaping the 
goodness of the resulting speech output.  The Blizzard 
Challenge arose in an effort to compare algorithm performance 
without the confounding effects of different datasets; various 
systems built using a common dataset are compared for overall 
quality as well as for intelligibility.   
 
This paper describes two IBM submissions to the Blizzard 
Challenge 2006. The two systems differ in the cost functions 
used to select segments. One system is used primarily on large 
datasets, while the other uses the cost function which was 
developed to perform well in situations in which the amount of 
data available is much less. The build-time processing for both 
of these systems is the same; only the run-time synthesis engine 
is changed. We also explore the use of prosody models built 
from a pooled-speaker dataset [2].  
 
The rest of the paper is organized as follows. After a brief 
overview of the IBM Concatenative Speech Synthesis system 
in Sections 2 and 3, we describe the application of these 
systems to the Blizzard Challenge databases and present the 
results of the listening tests for our systems in Section 4. 
 

2. System build 
The speech associated with each Blizzard dataset was used to 
build a speaker dependent Hidden Markov Model (HMM). In 
these models, each phone is represented by a typical left to 
right 3-state HMM.  The resulting models are used to align the 

recorded sentences to their phonetic labels. Using the state 
alignments, a top-down likelihood-based acoustic tree is built 
for each HMM state using the standard acoustic tree growing 
algorithm used in speech recognition. The leaves of the 
resulting trees are considered to be the synthesis units, and all 
segments aligned to any particular leaf are candidates for this 
leaf.  In addition, all words that occurred in the recorded 
sentences along with an index to the corresponding speech 
segments are kept in a dictionary [1] henceforth called the 
“alternates’ dictionary.” The alternates’ dictionary is used 
during the segment search to allow segments that belong to a 
certain word to be considered during the search even if the 
front end predicts a different phonetic pronunciation for this 
word. 
 
The recorded sentences are also used to grow statistical 
decision trees for energy, duration, and pitch. Rather than 
building prosody trees for predicting f0 and duration 
exclusively from the Blizzard dataset, we have chosen to build 
the prosody models from a dataset resulting from pooling the 
speech of several speakers together according to the method 
detailed in [2]. This choice enables us to gain more training 
data for our models, at the potential expense of losing speaker-
specific characteristics of the Blizzard speakers. The form of 
the pitch model remains unchanged from our speaker-specific 
system. We use a decision tree with features derived from the 
text such as lexical stress, distances from phrase boundaries, 
etc. We predict one target pitch vector per syllable. The target 
pitch vector specifies the desired pitch at three points, 
corresponding to the beginning, middle, and end of the 
syllable's sonorant region. Although the form of the pitch 
model is the same in the pooled-speaker as the speaker-specific 
systems, the observation in each of these cases is different. 
Rather than modeling the pitch (in the log domain) as before, in 
the speaker-pooled model we subtract from the pitch the mean 
of the pitch for the speaker from whom the observation came. 
Finally, we divide by the standard deviation of the pitch for that 
speaker. Thus, our normalized observation is   (p-μi ) /σi  where 
p is the log pitch, μi is the mean of the log pitch for speaker i, 
and σi is the standard deviation of the log pitch for speaker i. 

 
In order to model durations, we combined the Blizzard datasets 
with in-house data collected from four professional speakers. 
All of the speakers who contributed data to the speaker-pooled 
prosody models spoke at roughly the same speaking rate. Thus, 



we did not need to normalize the duration observations before 
pooling them.  

 

3. Run-time Synthesis 

3.1. IBM System 1 

Our system [3] uses a rule-based front end to determine the 
sequence of units in synthesis. The candidate segments for the 
units determined by the front end are augmented with entries in 
the alternates’ dictionary to address potential mismatches 
between the pronunciations predicted by the front end and the 
actual pronunciations by the database speaker. The sequence of 
candidate segment lists together with the prosodic targets 
generated by the pooled-speaker models described above drive a 
Viterbi beam search for the sequence of segments which 
minimize the cost function.  
 
The search aims at selecting the token sequence with the least 
cost from among the candidate tokens. The target cost 
comprises a set of cost components: the f0 cost, which measures 
how far the f0 contour of the token is from that of the target, the 
duration cost, which measures how far the duration of the token 
is from the target, the energy cost, which measures how far the 
energy of the token is from that of the target (this component is 
often disabled, including in the experiments reported here). The 
transition cost comprises two components, one of which 
captures spectral smoothness across segment joins and another 
which captures pitch smoothness across the joins. The spectral 
smoothness component of this transition cost is based on the 
Euclidian distance between perceptually-modified Mel cepstral 
coefficients [6]. The target cost components and the transition 
cost components are added together using weights tuned by 
hand. 
 
After the search, to remove unwanted “pitch warble,” a new 
target contour is generated by convolving the concatenated f0(t) 
with a smoothing kernel, and the signal is then processed to 
match this new contour. While a smooth contour is, by and 
large, preferable to unintended rapid fluctuations, smoothing 
does have undesired side effects. Sometimes, f0 fluctuations are 
necessary, for example, to convey expressions such as 
excitement. Smoothing also reduces or obliterates other 
expressive voice qualities, such as creakiness. To preserve such 
effects whenever possible, we bypass signal processing 
completely for sufficiently long sequences of tokens which had 
been contiguous in the original corpus, except near the edges of 
the sequence where we impose a gradual transition to the f0 of 
the adjacent segments. While this “contiguous bypassing” 
removes prosody modification as a tool for expression 
manipulation, it allows maximally-faithful reproduction of 
expression present in the corpus.  
 

3.2. IBM System 2 

Our second submission to the Blizzard challenge explores the 
cost function developed for use in our embedded system, which 
is based on the same technology as our server voice, but is  

aimed to work in environments with memory limitations. This 
usually limits the size of the voice data, the executables and the 
runtime memory. Although the Blizzard Challenge does not 
pose any memory limitations, we have examined the possible 
usage of some of the techniques used in the embedded system. 
The motivation is that these techniques may be more suitable 
for small voices that comprise a small amount of speech data 
(the CMU-ARCTIC voice with only 1200 sentences). 

 
The embedded system synthesis process is similar to the 
baseline system.  The two main differences between the systems 
are in the transition cost functions and in segment 
concatenation. For the Blizzard challenge only the former has 
been found worthwhile to test. 

3.2.1. Transition cost function 

The baseline system can use its large database to generate long 
continuous utterances with only a small number of 
concatenation points. Since the embedded system typically 
works on considerably smaller voices than the baseline system, 
the number of splices is typically higher, and the role of the 
transition cost function becomes more important. This is also 
true for voices build for a small amount of voice data such as 
the ARCTIC voice. 
 
The embedded system uses the speech modeling scheme 
described in  [4],  [5]. The speech is divided into overlapping 
frames. The length of each speech frame is 20ms and they are 
evenly spaced at 10ms intervals. Each speech frame is 
represented by its complex spectral envelope (magnitude and 
phase), by a degree of voicing value and by its pitch frequency. 
The complex spectral envelope is approximated by 32 
magnitude coefficients and 32 phase coefficients, which are 
evenly spaced on a mel-scale axis.  
 
This representation is computed and encoded during voice 
building. During synthesis, speech is reconstructed from the 
decoded parameters. The spectral envelope parameters 
(magnitude only) are also reused in the embedded transition 
cost function computation. Besides saving memory, this 
representation has been found to be more accurate than the 
MFCC representation used in the baseline system. We shall 
refer to the spectral envelope amplitude parameters for each 
frame as feature vectors. 
 
When the embedded system calculates the transition cost 
between two segments it compares the feature vectors 
corresponding to two frames from each segment. From the first 
segment we pick the last frame that is inside the segment and 
the following frame. From the second segment we pick the first 
frame of the second segment and the preceding frame (Figure 
1).  
 
The pair of feature vectors from each pair of frames is 
converted to a transition vector (64 dimensional). The transition 
cost is then the Euclidian distance between the transition 
vectors. 
 
Many studies have tried to find a transition cost that best 
matches human perception [6-9]. However, these studies have 



not reached a consensus. One of the problems we have 
encountered is that a function that produces satisfactory results 
for voiced segments does not perform well for unvoiced 
segments. Hence, we have found it useful to process the feature 
vectors differently for voiced and unvoiced frames. 
 
 
 

 
Figure 1: comparing frames of two segments in the 

transition cost function 

 
For voiced frames we convert the spectral envelope features to 
loudness scale by raising them to the power of 0.5. We multiply 
them by weights that emphasize lower frequencies and then 
normalize the vector by its maximum. For unvoiced frames we 
compute the log of the spectral envelope amplitude features, 
multiply them by weights that emphasize higher frequencies and 
then normalize them by removing their mean value. 
 
Clearly, for contiguous segments the cost is identically zero 
because the two transition vectors are identical. In case there is 
a voicing mismatch between the transition vectors compared, 
the distance between them is assigned a large value, and thus, 
undesirable voiced-unvoiced transitions are avoided. 

3.2.2. Use in the Blizzard Challenge  

One of the systems that were submitted to the Blizzard 
Challenge (IBM2) was the baseline system that was modified to 
work with the embedded transition cost. This was done by 
replacing the MFCC transition vectors with the embedded 
transition vectors and by changing the distance to be Euclidian 
instead of Mahalanobis [6]. 
 

4. Evaluation and Results 

 
Two overlapping corpora were used to build the systems 
described in this paper. The main full corpus consists of 
approximately 5 hours of speech recorded by a native speaker of 
US-English. A second corpus, the Arctic dataset, is a subset of 
the full corpus containing approximately one hour of recordings 
of phonetically-balanced sentences chosen from publically-
available novels. Any component of the voice building process 
that makes use of all the data available during its processing 
(e.g. aligning the text to the waveforms, where acoustic models 
are iteratively refined from all the relevant data available) was 
carried out separately for each of these two datasets to ensure 
that the smaller Arctic build was not influenced by any extra 
data present in the full set. Only algorithms that are applied on a 
single-file basis (e.g., pitch mark detection) were applied to the 

full dataset once and then the results recycled for the Artic 
build. Since we make use of multiple speakers' data when 
building the speaker-independent prosody models used here, 
additional data were combined with each of the two datasets to 
build the prosody trees. However, only the portion of the target 
speaker's data corresponding to the Artic build was used when 
building the prosody models for this corpus. In other words, the 
prosody models exploit data from several speakers, but only the 
portion of data from its target speaker contained in the dataset 
for which the prosody models are being built.  

1st segment 

2nd segment 

10ms 
frame 

 
The synthesized samples were submitted to a total of three 
evaluation tasks, one aiming to evaluate the overall subjective 
quality of speech, and two functional tasks aiming to evaluate 
the speech intelligibility: 
 
1. Overall quality judgments: Subjects rate on a 5-point scale 
the overall quality of the speech. 
 
2. MRT Task: Subjects listen to carrier phrases containing a 
confusable monosyllabic word (chosen from the Modified 
Rhyme Test, a standard test for speech intelligibility), and are 
asked to transcribe this word. 
 
3. Semantically Unpredictable Sentence: Subjects listen to 
sentences that are randomly generated according to a simple 
grammar (det adj noun verb det adj noun) and a medium-
frequency vocabulary, and are asked to transcribe what they 
hear. 
 
Three categories of listeners were used in the listening study: (i) 
undergraduate students (US-English speaking students who 
were paid for their participation in the study), (ii) volunteers 
(subjects who were available to take the test over a web 
interface), and (iii) speech experts (subjects who are 
knowledgeable about speech processing or synthesis and who 
were provided by the participants). 
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Figure 2. MOS across sites, from undergraduate listeners. 
Cream/light is the 5 hour dataset and blue/shaded is the 1 hour 
Arctic subset. 
 
Figure 2 shows the overall MOS scores for all participants as 
determined by a group of undergraduate listeners. We have 



identified by name the two IBM submissions presented in this 
paper. 
 
Figure 3 shows the overall SUS results as determined by the 
undergraduate listeners, and figure 4 shows the overall MRT 
results, again as determined by the undergraduate listeners. 
Similar results were obtained from both randomly selected 
listeners and also from speech expert listeners but are omitted 
here due to space limitations. 
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Figure 3. SUS results across sites, from undergraduate 
listeners. Cream/light is the 5 hour dataset, and blue/shaded is 
the 1 hour Arctic subset.  
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Figure 4. MRT results across sites, from undergraduate 
listeners. Cream/light is the 5 hour dataset, and blue/shaded is 
the 1 hour Arctic subset. 
 
 
 

5. Discussion 
Inherent to the design of a text-to-speech system is a choice of 
pleasantness and naturalness vs. intelligibility, as these qualities 
tend to trade off against one another. The IBM submissions to 
the Blizzard challenge show good performance in this two-
dimensional space.   
 

Another trend to note is the improvement of a system’s 
performance in going from the small dataset to the large, as a 
means of gauging how the system may perform in very-large-
dataset situations.  The IBM submissions, especially IBM1, 
show good improvement in going from one hour to five hours of 
data, which is consistent with the fact that the system is 
designed to perform well on very large amounts of data. 
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