
The IBM Submission to the 2006 Blizzard Text-to-Speech Challenge

 Ellen Eide1, Raul Fernandez1, Ron Hoory2, Wael Hamza1, Zvi Kons2, Michael Picheny1, Ariel Sagi2,
Slava Shechtman2, Zhi Wei Shuang3

1IBM T.J. Watson Research Center
2 IBM Haifa Research Center

3 IBM China Research Lab

eeide@us.ibm.com

Abstract
In this paper, we present two concatenative text-to-speech
systems built from the “Blizzard Challenge” speech databases.
The two systems differ primarily in their segment selection cost
function. One system has our baseline cost function, and the
other has a cost function which has been altered to potentially
better handle small datasets. Results indicate that both systems
perform similarly in terms of MOS and intelligibility.

1. Introduction
One key factor in determining the quality of the output of a
text-to-speech system is the dataset upon which it is modeled.
Both the voice characteristics of the database speaker and the
sheer quantity of data play important roles in shaping the
goodness of the resulting speech output. The Blizzard
Challenge arose in an effort to compare algorithm performance
without the confounding effects of different datasets; various
systems built using a common dataset are compared for overall
quality as well as for intelligibility.

This paper describes two IBM submissions to the Blizzard
Challenge 2006. The two systems differ in the cost functions
used to select segments. One system is used primarily on large
datasets, while the other uses the cost function which was
developed to perform well in situations in which the amount of
data available is much less. The build-time processing for both
of these systems is the same; only the run-time synthesis engine
is changed. We also explore the use of prosody models built
from a pooled-speaker dataset [2].

The rest of the paper is organized as follows. After a brief
overview of the IBM Concatenative Speech Synthesis system
in Sections 2 and 3, we describe the application of these
systems to the Blizzard Challenge databases and present the
results of the listening tests for our systems in Section 4.

2. System build
The speech associated with each Blizzard dataset was used to
build a speaker dependent Hidden Markov Model (HMM). In
these models, each phone is represented by a typical left to
right 3-state HMM. The resulting models are used to align the

recorded sentences to their phonetic labels. Using the state
alignments, a top-down likelihood-based acoustic tree is built
for each HMM state using the standard acoustic tree growing
algorithm used in speech recognition. The leaves of the
resulting trees are considered to be the synthesis units, and all
segments aligned to any particular leaf are candidates for this
leaf. In addition, all words that occurred in the recorded
sentences along with an index to the corresponding speech
segments are kept in a dictionary [1] henceforth called the
“alternates’ dictionary.” The alternates’ dictionary is used
during the segment search to allow segments that belong to a
certain word to be considered during the search even if the
front end predicts a different phonetic pronunciation for this
word.

The recorded sentences are also used to grow statistical
decision trees for energy, duration, and pitch. Rather than
building prosody trees for predicting f0 and duration
exclusively from the Blizzard dataset, we have chosen to build
the prosody models from a dataset resulting from pooling the
speech of several speakers together according to the method
detailed in [2]. This choice enables us to gain more training
data for our models, at the potential expense of losing speaker-
specific characteristics of the Blizzard speakers. The form of
the pitch model remains unchanged from our speaker-specific
system. We use a decision tree with features derived from the
text such as lexical stress, distances from phrase boundaries,
etc. We predict one target pitch vector per syllable. The target
pitch vector specifies the desired pitch at three points,
corresponding to the beginning, middle, and end of the
syllable's sonorant region. Although the form of the pitch
model is the same in the pooled-speaker as the speaker-specific
systems, the observation in each of these cases is different.
Rather than modeling the pitch (in the log domain) as before, in
the speaker-pooled model we subtract from the pitch the mean
of the pitch for the speaker from whom the observation came.
Finally, we divide by the standard deviation of the pitch for that
speaker. Thus, our normalized observation is (p-μi) /σi where
p is the log pitch, μi is the mean of the log pitch for speaker i,
and σi is the standard deviation of the log pitch for speaker i.

In order to model durations, we combined the Blizzard datasets
with in-house data collected from four professional speakers.
All of the speakers who contributed data to the speaker-pooled
prosody models spoke at roughly the same speaking rate. Thus,

we did not need to normalize the duration observations before
pooling them.

3. Run-time Synthesis

3.1. IBM System 1

Our system [3] uses a rule-based front end to determine the
sequence of units in synthesis. The candidate segments for the
units determined by the front end are augmented with entries in
the alternates’ dictionary to address potential mismatches
between the pronunciations predicted by the front end and the
actual pronunciations by the database speaker. The sequence of
candidate segment lists together with the prosodic targets
generated by the pooled-speaker models described above drive a
Viterbi beam search for the sequence of segments which
minimize the cost function.

The search aims at selecting the token sequence with the least
cost from among the candidate tokens. The target cost
comprises a set of cost components: the f0 cost, which measures
how far the f0 contour of the token is from that of the target, the
duration cost, which measures how far the duration of the token
is from the target, the energy cost, which measures how far the
energy of the token is from that of the target (this component is
often disabled, including in the experiments reported here). The
transition cost comprises two components, one of which
captures spectral smoothness across segment joins and another
which captures pitch smoothness across the joins. The spectral
smoothness component of this transition cost is based on the
Euclidian distance between perceptually-modified Mel cepstral
coefficients [6]. The target cost components and the transition
cost components are added together using weights tuned by
hand.

After the search, to remove unwanted “pitch warble,” a new
target contour is generated by convolving the concatenated f0(t)
with a smoothing kernel, and the signal is then processed to
match this new contour. While a smooth contour is, by and
large, preferable to unintended rapid fluctuations, smoothing
does have undesired side effects. Sometimes, f0 fluctuations are
necessary, for example, to convey expressions such as
excitement. Smoothing also reduces or obliterates other
expressive voice qualities, such as creakiness. To preserve such
effects whenever possible, we bypass signal processing
completely for sufficiently long sequences of tokens which had
been contiguous in the original corpus, except near the edges of
the sequence where we impose a gradual transition to the f0 of
the adjacent segments. While this “contiguous bypassing”
removes prosody modification as a tool for expression
manipulation, it allows maximally-faithful reproduction of
expression present in the corpus.

3.2. IBM System 2

Our second submission to the Blizzard challenge explores the
cost function developed for use in our embedded system, which
is based on the same technology as our server voice, but is

aimed to work in environments with memory limitations. This
usually limits the size of the voice data, the executables and the
runtime memory. Although the Blizzard Challenge does not
pose any memory limitations, we have examined the possible
usage of some of the techniques used in the embedded system.
The motivation is that these techniques may be more suitable
for small voices that comprise a small amount of speech data
(the CMU-ARCTIC voice with only 1200 sentences).

The embedded system synthesis process is similar to the
baseline system. The two main differences between the systems
are in the transition cost functions and in segment
concatenation. For the Blizzard challenge only the former has
been found worthwhile to test.

3.2.1. Transition cost function

The baseline system can use its large database to generate long
continuous utterances with only a small number of
concatenation points. Since the embedded system typically
works on considerably smaller voices than the baseline system,
the number of splices is typically higher, and the role of the
transition cost function becomes more important. This is also
true for voices build for a small amount of voice data such as
the ARCTIC voice.

The embedded system uses the speech modeling scheme
described in [4], [5]. The speech is divided into overlapping
frames. The length of each speech frame is 20ms and they are
evenly spaced at 10ms intervals. Each speech frame is
represented by its complex spectral envelope (magnitude and
phase), by a degree of voicing value and by its pitch frequency.
The complex spectral envelope is approximated by 32
magnitude coefficients and 32 phase coefficients, which are
evenly spaced on a mel-scale axis.

This representation is computed and encoded during voice
building. During synthesis, speech is reconstructed from the
decoded parameters. The spectral envelope parameters
(magnitude only) are also reused in the embedded transition
cost function computation. Besides saving memory, this
representation has been found to be more accurate than the
MFCC representation used in the baseline system. We shall
refer to the spectral envelope amplitude parameters for each
frame as feature vectors.

When the embedded system calculates the transition cost
between two segments it compares the feature vectors
corresponding to two frames from each segment. From the first
segment we pick the last frame that is inside the segment and
the following frame. From the second segment we pick the first
frame of the second segment and the preceding frame (Figure
1).

The pair of feature vectors from each pair of frames is
converted to a transition vector (64 dimensional). The transition
cost is then the Euclidian distance between the transition
vectors.

Many studies have tried to find a transition cost that best
matches human perception [6-9]. However, these studies have

not reached a consensus. One of the problems we have
encountered is that a function that produces satisfactory results
for voiced segments does not perform well for unvoiced
segments. Hence, we have found it useful to process the feature
vectors differently for voiced and unvoiced frames.

Figure 1: comparing frames of two segments in the

transition cost function

For voiced frames we convert the spectral envelope features to
loudness scale by raising them to the power of 0.5. We multiply
them by weights that emphasize lower frequencies and then
normalize the vector by its maximum. For unvoiced frames we
compute the log of the spectral envelope amplitude features,
multiply them by weights that emphasize higher frequencies and
then normalize them by removing their mean value.

Clearly, for contiguous segments the cost is identically zero
because the two transition vectors are identical. In case there is
a voicing mismatch between the transition vectors compared,
the distance between them is assigned a large value, and thus,
undesirable voiced-unvoiced transitions are avoided.

3.2.2. Use in the Blizzard Challenge

One of the systems that were submitted to the Blizzard
Challenge (IBM2) was the baseline system that was modified to
work with the embedded transition cost. This was done by
replacing the MFCC transition vectors with the embedded
transition vectors and by changing the distance to be Euclidian
instead of Mahalanobis [6].

4. Evaluation and Results

Two overlapping corpora were used to build the systems
described in this paper. The main full corpus consists of
approximately 5 hours of speech recorded by a native speaker of
US-English. A second corpus, the Arctic dataset, is a subset of
the full corpus containing approximately one hour of recordings
of phonetically-balanced sentences chosen from publically-
available novels. Any component of the voice building process
that makes use of all the data available during its processing
(e.g. aligning the text to the waveforms, where acoustic models
are iteratively refined from all the relevant data available) was
carried out separately for each of these two datasets to ensure
that the smaller Arctic build was not influenced by any extra
data present in the full set. Only algorithms that are applied on a
single-file basis (e.g., pitch mark detection) were applied to the

full dataset once and then the results recycled for the Artic
build. Since we make use of multiple speakers' data when
building the speaker-independent prosody models used here,
additional data were combined with each of the two datasets to
build the prosody trees. However, only the portion of the target
speaker's data corresponding to the Artic build was used when
building the prosody models for this corpus. In other words, the
prosody models exploit data from several speakers, but only the
portion of data from its target speaker contained in the dataset
for which the prosody models are being built.

1st segment

2nd segment

10ms
frame

The synthesized samples were submitted to a total of three
evaluation tasks, one aiming to evaluate the overall subjective
quality of speech, and two functional tasks aiming to evaluate
the speech intelligibility:

1. Overall quality judgments: Subjects rate on a 5-point scale
the overall quality of the speech.

2. MRT Task: Subjects listen to carrier phrases containing a
confusable monosyllabic word (chosen from the Modified
Rhyme Test, a standard test for speech intelligibility), and are
asked to transcribe this word.

3. Semantically Unpredictable Sentence: Subjects listen to
sentences that are randomly generated according to a simple
grammar (det adj noun verb det adj noun) and a medium-
frequency vocabulary, and are asked to transcribe what they
hear.

Three categories of listeners were used in the listening study: (i)
undergraduate students (US-English speaking students who
were paid for their participation in the study), (ii) volunteers
(subjects who were available to take the test over a web
interface), and (iii) speech experts (subjects who are
knowledgeable about speech processing or synthesis and who
were provided by the participants).

0

2

4

6

A : B : C: D: E : F : G :
IBM1 I: J : K : L:

IBM2 N:
NAT

Figure 2. MOS across sites, from undergraduate listeners.
Cream/light is the 5 hour dataset and blue/shaded is the 1 hour
Arctic subset.

Figure 2 shows the overall MOS scores for all participants as
determined by a group of undergraduate listeners. We have

identified by name the two IBM submissions presented in this
paper.

Figure 3 shows the overall SUS results as determined by the
undergraduate listeners, and figure 4 shows the overall MRT
results, again as determined by the undergraduate listeners.
Similar results were obtained from both randomly selected
listeners and also from speech expert listeners but are omitted
here due to space limitations.

0

40

80

120

A: B : C: D: E : F: G:
IBM1 I: J : K : L:

IBM2 N:

Figure 3. SUS results across sites, from undergraduate
listeners. Cream/light is the 5 hour dataset, and blue/shaded is
the 1 hour Arctic subset.

0

40

80

A: B : C: D: E : F: G:
IBM1 I: J : K: L:

IBM2 N:

Figure 4. MRT results across sites, from undergraduate
listeners. Cream/light is the 5 hour dataset, and blue/shaded is
the 1 hour Arctic subset.

5. Discussion
Inherent to the design of a text-to-speech system is a choice of
pleasantness and naturalness vs. intelligibility, as these qualities
tend to trade off against one another. The IBM submissions to
the Blizzard challenge show good performance in this two-
dimensional space.

Another trend to note is the improvement of a system’s
performance in going from the small dataset to the large, as a
means of gauging how the system may perform in very-large-
dataset situations. The IBM submissions, especially IBM1,
show good improvement in going from one hour to five hours of
data, which is consistent with the fact that the system is
designed to perform well on very large amounts of data.

6. References
[1] Hamza, W., Eide, E., Bakis, R., “Reconciling

Pronunciation Differences between the Front-End and the
Back-End in the IBM Speech Synthesis System,” Proc.
ICSLP 2004, Korea.

[2] Eide, E. and Picheny, M. A. “Towards Pooled-Speaker
Concatenative Text-to-Speech,” Proc. ICASSP 2006.
Toulouse, France.

[3] Pitrelli, J. et al. "The IBM Expressive Text-to-Speech
Synthesis System for American English," IEEE
Transactions on Audio, Speech and Language Processing.
Volume 14, Number 4. pp 1099-1108. July, 2006.

[4] Chazan, D., Hoory R., Sagi A., Shechtman S., Sorin A.,
Shuang, Z. and Bakis, R. "High quality sinusoidal
modeling of wideband speech for the purpose of speech
synthesis and modification", ICASSP 2006, Toulouse, May
2006.

[5] Chazan, D., Hoory, R., Kons, Z., Sagi A., Shechtman, S.
and Sorin A., "Small footprint concatenative text-to-speech
synthesis system using complex spectral envelope
modeling", Eurospeech 2005, Lisbon, Sep 2005..

[6] Donovan, R. "A New Distance Measure for Costing
Spectral Discontinuities in Concatenative Speech
Synthesizers", Proc. 4th ISCA Tutorial and Research
Workshop on Speech Synthesis, Scotland 2001.

[7] Vepa, J. and King, S., "Join Cost for Unit Selection Speech
Synthesis" in "New Paradigms and Advances in Text to
Speech Synthesis", Prentice Hall 2005.

[8] Vepa, J., King, S. and Taylor, P., "New objective distance
measures for spectral discontinuities in concatenative
speech synthesis", IEEE Workshop on Speech Synthesis
2002, NY 2002.

[9] Stylianou, Y. and Syrdal, A. K., "Perceptual and objective
detection of discontinuities in concatenative speech
synthesis", ICASSP 2001, Salt Lake City 2001.

	1. Introduction
	2. System build
	3. Run-time Synthesis
	3.1. IBM System 1
	3.2. IBM System 2
	3.2.1. Transition cost function
	3.2.2. Use in the Blizzard Challenge

	4. Evaluation and Results
	5. Discussion
	6. References

