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Abstract

CerevoiceR©is a unit selection speech synthesis system produced
by Cereproc Ltd. The system was used to build small and large
unit selection databases using the data supplied by the Blizzard
Challenge 2006. The large database system was used as a baseline
system while two experimental approaches for improving the qual-
ity of the small database system were explored. 1) Synthetically
generating diphones from sections of diphones in the database of-
fline and then using them in synthesis, a process we term bulking.
2) Applying limited manual intervention based on negative feed-
back to improve quality, a process we term second-pass synthesis.
Both techniques resulted in the small database system maintaining
the quality of the larger system. We conclude that there is much
room for improvement in the quality of small database systems us-
ing unit selection without the requirement for more data and that
second-pass synthesis offers a potential means for training small
database unit selection systems.
Index Terms: speech synthesis, unit selection.

1. Introduction
CerevoiceR©is a unit selection speech synthesis SDK produced by
Cereproc Ltd., a company founded in late 2005 with a focus on
creating characterful synthesis and massively increasing the effi-
ciency of unit selection voice creation. The system entered into
the Blizzard Challenge 2006 was the result of Cereproc’s initial 5
months development work. The system is designed with an open
architecture, has a footprint of approximately 70Mb for a 16Khz
voice and runs at approximately 10 channels realtime. The system
is a diphone based unit selection system with pre-pruning and a
Viterbi search for selecting candidates from the database similar
to systems described in [1, 2, 3].

The main focus of early development work was to explore the
extent to which databases can be reduced and still produce an ac-
ceptable quality of synthesis. Two approaches were explored. The
first was to examine how far the degrees of freedom could be ex-
tended within small databases by using half phones. This differed
from approaches such as [4] in that the required diphones were
synthesised offline and used tobulk-up the small database. The
second was to examine to what extent efficient manual interven-
tion could be harnessed to improve synthesis quality, a process
we termsecond-pass synthesis. The main objective for our Bliz-
zard entry was to explore these techniques. With this in mind it is
important to clearly distinguish the two Cerevoice entries to Bliz-
zard. The full database entry usedno small database techniques
and was completely automatic, whereas the small (Arctic) entry

did use these techniques and thus made use of some manual inter-
vention.

1.1. Rationale behind second-pass synthesis

A vast proportion of speech audio currently used in computer ap-
plications is in the form of recorded prompts. This alone demon-
strates that although fully automated synthesis is required for com-
pletely dynamic content, much content is, in fact, not that dynamic
at all. Currently, users of speech synthesis have used markup such
as SSML [5] to manually control exactly how synthesis is realised.
However the format of much of this markup stems from earlier di-
phone based synthesis systems rather than database approaches.
Cerevoice, however, will accept markup which allows users to
control the inner working of the selection process. Such manual
intervention is an effective stop-gap technique for competing with
natural pre-recorded prompts.

In addition, investigating efficient manual methods for im-
proving synthesis addresses a crucial research question; given the
database, how good could the synthesis become if our search al-
gorithms produced optimum quality speech? In order to supply
synthesis for entertainment there is a requirement for building
fast, good quality characterful voices, often within specific do-
mains. It is currently unclear what the degrees of freedom are
for minimising the size of collected databases. Previous work
which has tried to improve the quality of voices made from small
databases has made use of information from a different voice with
a larger database, either by using voice-morphing e.g.[6] or the
larger voices prosodic model e.g.[7]. In contrast, second-pass syn-
thesis allows us to answer the question of whether critical errors in
the synthesis are caused by the poverty of the search algorithm or
whether they are caused by database sparsity.

2. Overview of the system
Cerevoice is a new faster-than-realtime diphone unit selection
speech synthesis engine, available for academic and commercial
use. The core Cerevoice engine is an enhanced synthesis ’back
end’, written in C for portability to a variety of platforms. The
engine does not fit the classical definition of a synthesis back end,
as it includes lexicon lookup and letter-to-sound rule modules, see
Fig. 1. An XML API defines the input to the engine. The API is
based on the principle of a ’spurt’ of speech. A spurt is defined as
a portion of speech between two pauses.

To simplify the creation of applications based on Cerevoice,
the core engine is wrapped in higher level languages such as
Python using Swig. For example, a simple Python/Tk GUI was



Figure 1:Overview of the architecture of the Cerevoice synthesis
system. A key element in the architecture is the separation of text
normalisation from the selection part of the system and the use of
an XML API.

written to generate the test sentences for the Blizzard challenge.
The Cerevoice engine is agnostic about the ’front end’ used

to generate spurt XML. Cereproc use a modular Python system
for text processing. Spurt generation is carried out using a greedy
incremental text normaliser. Spurts are subsequently marked up
by reduction and homograph taggers to inform the engine of the
correct lexical variant dependent on the spurt context.

3. Processing the Blizzard Data
A preliminary check of the text files provided by Blizzard sug-
gested that most of the text had been pre-normalised. However,
there were still problems with data ambiguity in some areas. The
word ’corp’s’ is read once as ’corp’s’ and at other times as ’corpo-
ration’s’. Upper-case words were neither predictably spelt out as
letters, or spoken as words. For example, ’GAP’ and ’LAN’ were
read ’G A P’ and ’L A N’, with ’TOEIC’ read as a word. A hand
created list of the latter type of word was created, and all other up-
per case strings split into individual letters. The one exception to
this rule was ’II’, which was mapped to ’two’.

3.1. Voice building

Voice building in Cerevoice is a heavily automated, modular,
dependency-driven process, consisting of two main types of com-
ponent: speech parameterisation and segmentation. Speech data,
text transcriptions, and a lexicon are the only required inputs to
voice building. We decided to use our own pronunciation lexicon
and segmenter to build the Blizzard entry. The American English
lexicon is a modified version of the CMU pronunciation lexicon.
Hence, of the Blizzard data, only audio files and their text tran-
scriptions were used to build the Cerevoice entry. Due to resource
constraints, some pronunciations from the full database that were
missing from the lexicon were not added. It was decided to leave
out 358 input sentences rather than include unchecked automati-
cally generated pronunciations. Many of the missing words were
foreign in origin. In fact, leaving out sentences that contain many
Spanish, German, or Japanese words may improve the quality of
the final system since attempts are often made to render sounds
into a foreign phone set (for example, the word ’Kyoto’ in the
Blizzard data).

Segmentation is carried out using the HTK hidden markov
model toolkit in forced alignment mode. f0 and pitch mark pa-
rameters are generated using the ESPS tools ’epochs’ and ’getf0’.
Edinburgh Speech Tools’ ’sig2fv’ is used to generate cepstral pa-

rameters, which are used to generate Line Spectral Frequencies.

3.2. Voice Tuning

The system uses both symbolic (e.g. stress, break index infor-
mation) and parametric target cost functions (e.g. f0 and dura-
tion). Transition costs are based on Line Spectral Frequencies,
f0 smoothed over voiced plus unvoiced speech, and energy. Tar-
get and transition weights are set manually although setting for
the Blizzard entry were very similar to values used for Cereproc’s
other voices.

Tuning consisted mainly of modifying f0 and energy target pa-
rameters to suit the voice. In listening tests, the majority of prob-
lems were found to be due to wrong lexicon entries or missing pro-
nunciation variants. Automatically generated segmentations were
not modified in any way.

4. Improving Small Footprint Synthesis
Unit selection synthesis systems are often criticised for the large
database size required to produce natural sounding speech across
many contexts. A reduced database size can cause a sharp drop
in the perceived quality of the speech output. The Arctic database
portion of the challenge contains only a fifth of the audio data from
the full challenge. For this reason, we decided to implement two
novel means of improving the speech output: voice bulking and
second-pass synthesis.

4.1. Voice Bulking

Voice bulking is the creation of new units from existing non-
contiguous, but probably well matched, sections of speech. The
result is a new diphone created from two demiphones (half-
diphones). For example, taking an ’ao1-pause’ diphone from the
end of the word ’thaw’ and a ’pause-p’ diphone from the word
’pat’, phone boundaries can be used to cut the diphones into demi-
phones and create a ao-p diphone.

All demiphones used for bulking were taken from word
boundaries. This made it easy to create new utterances contain-
ing the bulked diphone, by simply splicing two words together to
create a new diphone at the word boundary. All other diphones in
the utterance are marked for removal from the database at build
time. Fig. 2 shows an example of a bulked ’ao-p’ diphone made
from concatenating ’thaw’ to ’pat’.

The flexible short pause model used during segmentation in-
serts a large number of pauses that can be used for bulking. Other
word boundary locations for bulking were also selected, after cre-
ating some bulked diphones by hand to test the procedure.

Bulking Locations (either side can be used to create a new
diphone):

• any phone - short pause - any phone

• fricative - vowel

• vowel - fricative

• any phone - plosive

• any phone - affricate

1We use the CMU style machine readable phone set to describe the
phones here. (ao - vowel in ’pour’, aw - vowel in ’cow’, ay - vowel in
’pie’, er1 - stressed vowel in ’her’, er0 - unstressed second vowel in ’after’,
oy - vowel in ’boy’, dh - first consonant in ’the’, zh - middle consonant in
’measure’)



Figure 2:Example of a bulked diphone constructed by concatenat-
ing the word ’thaw’ to ’pat’ offline. The resulting diphone is then
added to the small database to reduce sparsity.

Bulking was implemented as part of the Cerevoice voice build-
ing process. The bulking process added 102 missing diphones
to the unit selection database for the Arctic task, raising the total
number of diphones from 1320 to 1422. 6 diphones that appeared
in the Blizzard test set were taken from this bulked set, ’ao-p’, ’aw-
ay’, ’ax-er’, ’d-oy’, ’dh-z’ and ’zh-p’. For this task, bulking was
used only to improve coverage of missing diphones, but it could
easily be extended to provide additional coverage of any diphone
that could be bulked. Of the bulked units, all sounded natural, with
the exception of ’dh-z’. A ’dh-z’ diphone in the word ’clothes’
contained a perceptual click due to the ’z’ containing a portion of
a previous vowel.

4.2. Second-pass synthesis

Second-pass synthesis is a post-hoc method of tuning the synthe-
sis output to improve the perceived quality of the output. A Viterbi
search is used to find the ’best’ sequence of states. In Cerevoice it
is possible to ask the engine to prune out a section of the best path
found during the Viterbi search and to rerun the Viterbi over that
section to find a less optimal alternative orvariant. The next vari-
ant approach can be applied to a whole utterance or, more usefully,
focus on a problem word or diphone. In the case of changing a sin-
gle word or diphone in a larger utterance, units not within the the
variant section are ’locked’ to prevent modification of units that
are considered acceptable. A new variant is selected by running
the Viterbi search then pruning out the rejected selection of units.
The pruning out of rejected units is cyclical, continuing until the
requested variant number is found. Inside an XML spurt, a word
can enclosed by a ’usel’ tag containing a variant attribute to force
this behaviour. For example<usel variant=’0’> is equivalent to
no tag, and<usel variant=’6’> would be the sixth alternative ac-
cording to the Viterbi search. Fig. 3 shows a schematic of this
process.

In addition to adding variant tags to the XML, operators were
also permitted to change lexical reduction. We altered reduction
because our reduction rules are not sensitive to database size. For
a large database this is acceptable but for smaller databases it is
more important to reflect the speaker’s produced reduction more
closely.

It took approximately 1.5 hours for three operators to manu-
ally alter the synthesis for the small database entry. Alternative
variants were selected only for words which were regarded as hav-
ing a critical error and reduction was altered only when a clear
concatenation error occurred in a reduced or reducible form.

Below is an example from the Blizzard Arctic database test

Figure 3:Schematic diagram of the Cerevoice variant tag process.
a) The best path chosen by the Viterbi is shown as a black line. b)
The unit in row 3 column 3 is rejected and the variant tag requests
the next alternative. The path going through the unit is pruned out
and a second path marked in black is selected. c) The new unit at
row 1 column 3 is also rejected, the process is run again, a final
acceptable unit at row 4 column 3 is selected.

marked up with variant tags.

The <usel variant=’2’ >Fruitto </usel > de
Mare featured, calamari served with <usel
variant=’1’ >tomatoes </usel >, peppers,
artichoke, avocado and, again, frisee.

It is interesting to note that a considerable improvement in the
speech output can be made by massaging the output in this way.
This suggests that considerable improvement could still be made to
small-footprint unit selection engines, as it appears that although
the ’right’ data is there, it is not always selected.

5. Results
From a commercial point of view results from naive listeners are
of particular interest to Cereproc. It is the reaction of these listen-
ers to speech applications that will generally lead to commercial
success or failure of a speech application. For this reason we will
concentrate on the results from only the naive undergraduate group
of listeners.

5.1. MOS scores

Using MOS (mean opinion score) scores to compare systems is
difficult because of the large variation in results by both subjects
and materials. However, even with the lack of confidence that re-
sults would remain consistent between subject groups or between
trials, trends in the MOS scores should be taken very seriously.
The question, after all, “How natural do you think it is?” is one
of the two most important questions we should ask about synthetic
speech. (The other is “Did you understand it?” see section 5.2).

Fig. 4a shows the results in ranked order. ’O’ is the natural
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Figure 4:a) Results for MOS scores across all systems. ’O’ is the
natural speaker, ’L’ is the Cerevoice system. variance in MOS for
most systems is approximately 1.0. b) Results for word error rate
(WER) scores in the semantically unpredictable sentence (SUS)
test across all systems. ’L’ is the Cerevoice system. variance in the
SUS WER scores varies more between systems, from 14 to 30.

system and ’L’ is the Cerevoice system. Firstly we should all be
sobered by the clear difference between the natural speaker and
all our systems. Even taking into account a 0.35 change between
small and full systems in the naive subject group’s judgement of
the natural speaker, this shows there is a lot of work to do to im-
prove text to speech synthesis.

The results also suggest that the strategies we used to improve
the small database system worked. The system maintained its
quality between the two databases while many other systems saw
their quality degraded.

Given the fact that only critical errors were manually altered
for the small synthesis system it also suggests that it is these crit-
ical errors which have the most fundamental effect on perceived
naturalness.

5.2. WER scores

The word error rate (WER) is a second important measure of the
quality of a synthesis system. As with MOS evaluation, intelli-
gibility is hard to measure accurately. Factors such as short term
memory, the subjects’ typing speed, and word predictability have
a major effect on intelligibility results. Typically words from nor-
mal contexts are too easy to recognise. For this reason various
artificial neutral contexts are used, such as the modified rhyme test
(where a word is held in a carrier phrase) and the SUS (semanti-
cally unpredictable sentence) test, where words are strung together
into nonsense sentences.

Unfortunately, results for the intelligibility of the native
speaker were not available for comparison with the synthesis sys-
tems. It was felt that collating results for the MRT and SUS tests

was unwise given the very different nature of the tests. For this
reason we include results for the SUS test only. This is arguably
the harder test and reflects more closely the problem of recognis-
ing a word within a normal sentence. However, because the test is
harder for the subjects to take there is also considerable variation.

Fig. 4b shows the WERs for the SUS text for the undergradu-
ate (naive group) only. As with the MOS scores the small database
techniques appear to have been successful. The WER of the full
system is maintained. The Cerevoice system again moves up the
ranking not because it does better but because several other sys-
tems show a considerable degradation in their WER.

6. Conclusion
Given the early stage of Cerevoice development at the competition
deadline the overall results are positive. Cerevoice has competed
effectively at an international level after a very short time in devel-
opment and we expect the release system to do significantly better
in the next competition. We have also demonstrated that small
database techniques can make a significant impact on maintaining
the synthesis quality of unit selection systems built with less data.
Over the next year we expect to make use of bulking and second-
pass synthesis both for competing with naturally recorded prompts
but also to develop completely automatic means of improving the
quality of small database unit selection systems.
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